These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
762 related articles for article (PubMed ID: 25317565)
1. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity. Lee A; Park J; Lim M; Sunkara V; Kim SY; Kim GH; Kim MH; Cho YK Anal Chem; 2014 Nov; 86(22):11349-56. PubMed ID: 25317565 [TBL] [Abstract][Full Text] [Related]
2. High-purity capture of CTCs based on micro-beads enhanced isolation by size of epithelial tumor cells (ISET) method. Sun N; Li X; Wang Z; Li Y; Pei R Biosens Bioelectron; 2018 Apr; 102():157-163. PubMed ID: 29132051 [TBL] [Abstract][Full Text] [Related]
3. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Hyun KA; Lee TY; Lee SH; Jung HI Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749 [TBL] [Abstract][Full Text] [Related]
4. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846 [TBL] [Abstract][Full Text] [Related]
5. Size-selective collection of circulating tumor cells using Vortex technology. Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411 [TBL] [Abstract][Full Text] [Related]
6. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force. Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102 [TBL] [Abstract][Full Text] [Related]
7. Wedge-shaped microfluidic chip for circulating tumor cells isolation and its clinical significance in gastric cancer. Yang C; Zhang N; Wang S; Shi D; Zhang C; Liu K; Xiong B J Transl Med; 2018 May; 16(1):139. PubMed ID: 29792200 [TBL] [Abstract][Full Text] [Related]
8. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel. Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252 [TBL] [Abstract][Full Text] [Related]
9. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574 [TBL] [Abstract][Full Text] [Related]
10. An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Warkiani ME; Khoo BL; Tan DS; Bhagat AA; Lim WT; Yap YS; Lee SC; Soo RA; Han J; Lim CT Analyst; 2014 Jul; 139(13):3245-55. PubMed ID: 24840240 [TBL] [Abstract][Full Text] [Related]
11. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis. Gogoi P; Sepehri S; Chow W; Handique K; Wang Y Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840 [TBL] [Abstract][Full Text] [Related]
13. Label-free ferrohydrodynamic cell separation of circulating tumor cells. Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987 [TBL] [Abstract][Full Text] [Related]
14. Highly sensitive enumeration of circulating tumor cells in lung cancer patients using a size-based filtration microfluidic chip. Huang T; Jia CP; Jun-Yang ; Sun WJ; Wang WT; Zhang HL; Cong H; Jing FX; Mao HJ; Jin QH; Zhang Z; Chen YJ; Li G; Mao GX; Zhao JL Biosens Bioelectron; 2014 Jan; 51():213-8. PubMed ID: 23962709 [TBL] [Abstract][Full Text] [Related]
15. A microfluidic platform for high-purity separating circulating tumor cells at the single-cell level. Wang K; Zhou L; Zhao S; Cheng Z; Qiu S; Lu Y; Wu Z; Abdel Wahab AHA; Mao H; Zhao J Talanta; 2019 Aug; 200():169-176. PubMed ID: 31036170 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients. Hyun KA; Kwon K; Han H; Kim SI; Jung HI Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995 [TBL] [Abstract][Full Text] [Related]
17. High‑throughput and continuous flow isolation of rare circulating tumor cells and clusters in gastric cancer from human whole blood samples using electromagnetic vibration‑based filtration. Xiang A; Xue M; Ren F; Wang L; Ye Z; Li D; Ji Q; Ji G; Lu Z Oncol Rep; 2020 Jun; 43(6):1975-1985. PubMed ID: 32236590 [TBL] [Abstract][Full Text] [Related]
18. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system]. Cao R; Zhang M; Yu H; Qin J Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831 [TBL] [Abstract][Full Text] [Related]
19. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
20. FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole Blood at a Liquid-Liquid Interface. Kim TH; Lim M; Park J; Oh JM; Kim H; Jeong H; Lee SJ; Park HC; Jung S; Kim BC; Lee K; Kim MH; Park DY; Kim GH; Cho YK Anal Chem; 2017 Jan; 89(2):1155-1162. PubMed ID: 27958721 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]