BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25317660)

  • 1. Structural, kinetic, and docking studies of artificial imine reductases based on biotin-streptavidin technology: an induced lock-and-key hypothesis.
    Robles VM; Dürrenberger M; Heinisch T; Lledós A; Schirmer T; Ward TR; Maréchal JD
    J Am Chem Soc; 2014 Nov; 136(44):15676-83. PubMed ID: 25317660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein.
    Letondor C; Pordea A; Humbert N; Ivanova A; Mazurek S; Novic M; Ward TR
    J Am Chem Soc; 2006 Jun; 128(25):8320-8. PubMed ID: 16787096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation.
    Igareta NV; Tachibana R; Spiess DC; Peterson RL; Ward TR
    Faraday Discuss; 2023 Aug; 244(0):9-20. PubMed ID: 36924204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed Evolution of an Artificial Imine Reductase.
    Hestericová M; Heinisch T; Alonso-Cotchico L; Maréchal JD; Vidossich P; Ward TR
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1863-1868. PubMed ID: 29265726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of tryptophan residue fluorination on streptavidin stability and biotin-streptavidin interactions via molecular dynamics simulations.
    Panek JJ; Ward TR; Jezierska A; Novic M
    J Mol Model; 2009 Mar; 15(3):257-66. PubMed ID: 19052784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Catalytic Performance of an Artificial Metalloenzyme by Computational Design.
    Heinisch T; Pellizzoni M; Dürrenberger M; Tinberg CE; Köhler V; Klehr J; Häussinger D; Baker D; Ward TR
    J Am Chem Soc; 2015 Aug; 137(32):10414-9. PubMed ID: 26226626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.
    Antonenko YN; Rokitskaya TI; Kotova EA; Reznik GO; Sano T; Cantor CR
    Biochemistry; 2004 Apr; 43(15):4575-82. PubMed ID: 15078104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptavidin-Hosted Organocatalytic Aldol Addition.
    Santi N; Morrill LC; Luk LYP
    Molecules; 2020 May; 25(10):. PubMed ID: 32466220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotin reagents for antibody pretargeting. 2. Synthesis and in vitro evaluation of biotin dimers and trimers for cross-linking of streptavidin.
    Wilbur DS; Pathare PM; Hamlin DK; Weerawarna SA
    Bioconjug Chem; 1997; 8(6):819-32. PubMed ID: 9404654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streptavidin Coverage on Biotinylated Surfaces.
    Hamming PHE; Huskens J
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58114-58123. PubMed ID: 34813287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.
    Gamenara D; Domínguez de María P
    Org Biomol Chem; 2014 May; 12(19):2989-92. PubMed ID: 24695640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex.
    Freitag S; Le Trong I; Chilkoti A; Klumb LA; Stayton PS; Stenkamp RE
    J Mol Biol; 1998 May; 279(1):211-21. PubMed ID: 9636711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial metalloenzymes: (strept)avidin as host for enantioselective hydrogenation by achiral biotinylated rhodium-diphosphine complexes.
    Skander M; Humbert N; Collot J; Gradinaru J; Klein G; Loosli A; Sauser J; Zocchi A; Gilardoni F; Ward TR
    J Am Chem Soc; 2004 Nov; 126(44):14411-8. PubMed ID: 15521760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular architectures of streptavidin on biotinylated self-assembled monolayers. Tracking biomolecular reorganization after bioconjugation.
    Azzaroni O; Mir M; Knoll W
    J Phys Chem B; 2007 Dec; 111(48):13499-503. PubMed ID: 17997545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalysts.
    Santi N; Morrill LC; Swiderek K; Moliner V; Luk LYP
    Chem Commun (Camb); 2021 Feb; 57(15):1919-1922. PubMed ID: 33496282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.