These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25317915)

  • 41. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.
    Zhang X; Lin S; Chen Z; Megharaj M; Naidu R
    Water Res; 2011 May; 45(11):3481-8. PubMed ID: 21529878
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials.
    Sun Z; Zheng S; Ayoko GA; Frost RL; Xi Y
    J Hazard Mater; 2013 Dec; 263 Pt 2():768-77. PubMed ID: 24231330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoencapsulation of arsenate with nanoscale zero-valent iron (nZVI): A 3D perspective.
    Liu A; Wang W; Liu J; Fu R; Zhang WX
    Sci Bull (Beijing); 2018 Dec; 63(24):1641-1648. PubMed ID: 36658856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment.
    Satapanajaru T; Shea PJ; Comfort SD; Roh Y
    Environ Sci Technol; 2003 Nov; 37(22):5219-27. PubMed ID: 14655711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Physicochemical transformation of Fe/Ni bimetallic nanoparticles during aging in simulated groundwater and the consequent effect on contaminant removal.
    Dong H; Jiang Z; Deng J; Zhang C; Cheng Y; Hou K; Zhang L; Tang L; Zeng G
    Water Res; 2018 Feb; 129():51-57. PubMed ID: 29128681
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Organic-coated nanoparticulate zero valent iron for remediation of chemical oxygen demand (COD) and dissolved metals from tropical landfill leachate.
    Wijesekara SS; Basnayake BF; Vithanage M
    Environ Sci Pollut Res Int; 2014; 21(11):7075-87. PubMed ID: 24535668
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influences of nanoscale zero valent iron loadings and bicarbonate and calcium concentrations on hydrogen evolution in anaerobic column experiments.
    Paar H; Ruhl AS; Jekel M
    Water Res; 2015 Jan; 68():731-9. PubMed ID: 25462777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene oxide-induced formation of a boron-doped iron oxide shell on the surface of NZVI for enhancing nitrate removal.
    Han L; Li B; Tao S; An J; Fu B; Han Y; Li W; Li X; Peng S; Yin T
    Chemosphere; 2020 Aug; 252():126496. PubMed ID: 32203782
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants.
    Ma J; He D; Collins RN; He C; Waite TD
    Water Res; 2016 Nov; 105():331-340. PubMed ID: 27639342
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sulfurized nano zero-valent iron prepared via different methods: Effect of stability and types of surface corrosion products on removal of 2,4,6-trichlorophenol.
    Li L; Jin H; Luo N; Niu H; Cai Y; Cao D; Zhang S
    Ecotoxicol Environ Saf; 2023 May; 256():114864. PubMed ID: 37011511
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In-depth exploration of toxicity mechanism of nanoscale zero-valent iron and its aging products toward Escherichia coli under aerobic and anaerobic conditions.
    Li L; Dong H; Lu Y; Zhang H; Li Y; Xiao J; Xiao S; Jin Z
    Environ Pollut; 2022 Nov; 313():120118. PubMed ID: 36087891
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of selenium from water with nanoscale zero-valent iron: mechanisms of intraparticle reduction of Se(IV).
    Ling L; Pan B; Zhang WX
    Water Res; 2015 Mar; 71():274-81. PubMed ID: 25622004
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.
    Dong H; Guan X; Lo IM
    Water Res; 2012 Sep; 46(13):4071-80. PubMed ID: 22673340
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural Evolution of Nanoscale Zero-Valent Iron (nZVI) in Anoxic Co(2+) Solution: Interactional Performance and Mechanism.
    Zhang Y; Chen W; Dai C; Zhou C; Zhou X
    Sci Rep; 2015 Sep; 5():13966. PubMed ID: 26355955
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions.
    Liang W; Dai C; Zhou X; Zhang Y
    PLoS One; 2014; 9(1):e85686. PubMed ID: 24416439
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Oxidation resistance of nanoscale zero-valent iron supported on exhausted coffee grounds.
    Park MH; Lee J; Kim JY
    Chemosphere; 2019 Nov; 234():179-186. PubMed ID: 31207423
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of dithionite to extend the reactive lifetime of nanoscale zero-valent iron treatment systems.
    Xie Y; Cwiertny DM
    Environ Sci Technol; 2010 Nov; 44(22):8649-8655. PubMed ID: 20968304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. GO accelerate iron oxides formation and tetrabromobisphenol A removal enhancement in the GO loaded NZVI system.
    Wang W; Dong Q; Mao Y; Zhang Y; Gong T; Li H
    Environ Pollut; 2023 Jan; 316(Pt 1):120512. PubMed ID: 36309300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions.
    Li J; Chen C; Zhang R; Wang X
    Chem Asian J; 2015 Jun; 10(6):1410-7. PubMed ID: 25917859
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphate removal from aqueous solutions by nanoscale zero-valent iron.
    Wu D; Shen Y; Ding A; Qiu M; Yang Q; Zheng S
    Environ Technol; 2013; 34(17-20):2663-9. PubMed ID: 24527628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.