These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25318047)

  • 1. Microfluidic transfer of liquid interface for parallel stretching and stamping of terminal-unmodified single DNA molecules in zigzag-shaped microgrooves.
    Yasaki H; Onoshima D; Yasui T; Yukawa H; Kaji N; Baba Y
    Lab Chip; 2015 Jan; 15(1):135-40. PubMed ID: 25318047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic DNA Stretching Device for Single-Molecule Diagnostics.
    Onoshima D; Baba Y
    Methods Mol Biol; 2017; 1547():105-111. PubMed ID: 28044290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice-water interface migration by temperature controlling for stretching of DNA molecules.
    Komatsu J; Nakano M; Kurita H; Takashima T; Katsura S; Mizuno A
    J Biomol Struct Dyn; 2004 Dec; 22(3):331-7. PubMed ID: 15473706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods of stretching DNA molecules using flow fields.
    Kim JH; Shi WX; Larson RG
    Langmuir; 2007 Jan; 23(2):755-64. PubMed ID: 17209630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single DNA molecule isolation and trapping in a microfluidic device.
    Kumemura M; Collard D; Yamahata C; Sakaki N; Hashiguchi G; Fujita H
    Chemphyschem; 2007 Aug; 8(12):1875-80. PubMed ID: 17628880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated optics microfluidic device for detecting single DNA molecules.
    Krogmeier JR; Schaefer I; Seward G; Yantz GR; Larson JW
    Lab Chip; 2007 Dec; 7(12):1767-74. PubMed ID: 18030399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformation and dynamics of single DNA molecules in parallel-plate slit microchannels.
    Chen YL; Graham MD; de Pablo JJ; Randall GC; Gupta M; Doyle PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):060901. PubMed ID: 15697334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and numerical simulation of a DNA electrophoretic stretching device.
    Kim JM; Doyle PS
    Lab Chip; 2007 Feb; 7(2):213-25. PubMed ID: 17268624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA linearization through confinement in nanofluidic channels.
    Douville N; Huh D; Takayama S
    Anal Bioanal Chem; 2008 Aug; 391(7):2395-409. PubMed ID: 18340435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanofluidic device for single molecule studies with in situ control of environmental solution conditions.
    Zhang C; Jiang K; Liu F; Doyle PS; van Kan JA; van der Maarel JR
    Lab Chip; 2013 Jul; 13(14):2821-6. PubMed ID: 23674166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single molecule DNA intercalation in continuous homogenous elongational flow.
    Griffis JW; Safranovitch MM; Vyas SP; Gerrin S; Protozanova E; Malkin G; Meltzer RH
    Lab Chip; 2014 Oct; 14(19):3881-93. PubMed ID: 25133764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic DNA combing for parallel single-molecule analysis.
    Wu S; Jeffet J; Grunwald A; Sharim H; Gilat N; Torchinsky D; Zheng Q; Zirkin S; Xu L; Ebenstein Y
    Nanotechnology; 2019 Jan; 30(4):045101. PubMed ID: 30485249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets.
    Schaerli Y; Wootton RC; Robinson T; Stein V; Dunsby C; Neil MA; French PM; Demello AJ; Abell C; Hollfelder F
    Anal Chem; 2009 Jan; 81(1):302-6. PubMed ID: 19055421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetic concentration enrichment within a microfluidic device using a hydrogel microplug.
    Dhopeshwarkar R; Sun L; Crooks RM
    Lab Chip; 2005 Oct; 5(10):1148-54. PubMed ID: 16175272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet-based microfluidic systems for high-throughput single DNA molecule isothermal amplification and analysis.
    Mazutis L; Araghi AF; Miller OJ; Baret JC; Frenz L; Janoshazi A; Taly V; Miller BJ; Hutchison JB; Link D; Griffiths AD; Ryckelynck M
    Anal Chem; 2009 Jun; 81(12):4813-21. PubMed ID: 19518143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device.
    Shaw KJ; Joyce DA; Docker PT; Dyer CE; Greenway GM; Greenman J; Haswell SJ
    Lab Chip; 2011 Feb; 11(3):443-8. PubMed ID: 21072429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags.
    Chan EY; Goncalves NM; Haeusler RA; Hatch AJ; Larson JW; Maletta AM; Yantz GR; Carstea ED; Fuchs M; Wong GG; Gullans SR; Gilmanshin R
    Genome Res; 2004 Jun; 14(6):1137-46. PubMed ID: 15173119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic DNA microarray analysis: a review.
    Wang L; Li PC
    Anal Chim Acta; 2011 Feb; 687(1):12-27. PubMed ID: 21241842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic transport of biomolecules across liquid-liquid interfaces.
    Hahn T; Münchow G; Hardt S
    J Phys Condens Matter; 2011 May; 23(18):184107. PubMed ID: 21508474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.