These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25318047)

  • 21. Separation of single-stranded DNA fragments at a 10-nucleotide resolution by stretching in microfluidic channels.
    Wu J; Zhao SL; Gao L; Wu J; Gao D
    Lab Chip; 2011 Dec; 11(23):4036-40. PubMed ID: 21997134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA.
    Wang L; Li PC
    Anal Biochem; 2010 May; 400(2):282-8. PubMed ID: 20083083
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels.
    Mannion JT; Reccius CH; Cross JD; Craighead HG
    Biophys J; 2006 Jun; 90(12):4538-45. PubMed ID: 16732056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dielectrophoretic trapping and polarizability of DNA: the role of spatial conformation.
    Regtmeier J; Eichhorn R; Bogunovic L; Ros A; Anselmetti D
    Anal Chem; 2010 Sep; 82(17):7141-9. PubMed ID: 20690609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for patterning stretched DNA molecules on mica surfaces by soft lithography.
    Gad M; Sugiyama S; Ohtani T
    J Biomol Struct Dyn; 2003 Dec; 21(3):387-93. PubMed ID: 14616034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanofluidic channels fabrication and manipulation of DNA molecules.
    Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H
    IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atomic force microscopy of DNA molecules stretched by spin-coating technique.
    Ye JY; Umemura K; Ishikawa M; Kuroda R
    Anal Biochem; 2000 May; 281(1):21-5. PubMed ID: 10847606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of single molecule technology to rapidly map long DNA and study the conformation of stretched DNA.
    Phillips KM; Larson JW; Yantz GR; D'Antoni CM; Gallo MV; Gillis KA; Goncalves NM; Neely LA; Gullans SR; Gilmanshin R
    Nucleic Acids Res; 2005; 33(18):5829-37. PubMed ID: 16243782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleic acid amplification of individual molecules in a microfluidic device.
    Dettloff R; Yang E; Rulison A; Chow A; Farinas J
    Anal Chem; 2008 Jun; 80(11):4208-13. PubMed ID: 18459739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microfluidic system for large DNA molecule arrays.
    Dimalanta ET; Lim A; Runnheim R; Lamers C; Churas C; Forrest DK; de Pablo JJ; Graham MD; Coppersmith SN; Goldstein S; Schwartz DC
    Anal Chem; 2004 Sep; 76(18):5293-301. PubMed ID: 15362885
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps.
    Wu J; Chantiwas R; Amirsadeghi A; Soper SA; Park S
    Lab Chip; 2011 Sep; 11(17):2984-9. PubMed ID: 21779601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A double droplet trap system for studying mass transport across a droplet-droplet interface.
    Bai Y; He X; Liu D; Patil SN; Bratton D; Huebner A; Hollfelder F; Abell C; Huck WT
    Lab Chip; 2010 May; 10(10):1281-5. PubMed ID: 20445881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2007 Oct; 7(10):1280-7. PubMed ID: 17896011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of a microcapillary impedimetric transducer to changes in surface conductance at liquid/solid interface.
    Bratov A; Abramova N
    J Colloid Interface Sci; 2013 Aug; 403():151-6. PubMed ID: 23684227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatially controlled DNA unzipping by microfluidic interface positioning on a molecule perpendicular to a multicomponent flow.
    Mani NK; Rudiuk S; Baigl D
    Chem Commun (Camb); 2013 Aug; 49(61):6858-60. PubMed ID: 23787484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of individual polymers using microfluidic based microcurvilinear flow.
    Cheng CM; Kim Y; Yang JM; Leuba SH; Leduc PR
    Lab Chip; 2009 Aug; 9(16):2339-47. PubMed ID: 19636465
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths.
    Shaw KJ; Thain L; Docker PT; Dyer CE; Greenman J; Greenway GM; Haswell SJ
    Anal Chim Acta; 2009 Oct; 652(1-2):231-3. PubMed ID: 19786185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel fluorescent dyes for single DNA molecule techniques.
    Zarkov A; Vasilev A; Deligeorgiev T; Stoynov S; Nedelcheva-Veleva M
    Mol Imaging; 2013; 12(2):90-9. PubMed ID: 23415397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single DNA molecule stretching in sudden mixed shear and elongational microflows.
    Larson JW; Yantz GR; Zhong Q; Charnas R; D'Antoni CM; Gallo MV; Gillis KA; Neely LA; Phillips KM; Wong GG; Gullans SR; Gilmanshin R
    Lab Chip; 2006 Sep; 6(9):1187-99. PubMed ID: 16929398
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing concentration-dependent behavior of DNA-binding proteins on a single-molecule level illustrated by Rad51.
    Frykholm K; Freitag C; Persson F; Tegenfeldt JO; Granéli A
    Anal Biochem; 2013 Dec; 443(2):261-8. PubMed ID: 23994563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.