BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25318827)

  • 1. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).
    Tipping E; Lofts S
    Environ Toxicol Chem; 2015 Apr; 34(4):788-98. PubMed ID: 25318827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model.
    Tipping E; Lofts S
    Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic analysis of freshwater metal toxicity with WHAM-F
    Tipping E; Stockdale A; Lofts S
    Aquat Toxicol; 2019 Jul; 212():128-137. PubMed ID: 31103734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal mixture modeling evaluation project: 3. Lessons learned and steps forward.
    Farley KJ; Meyer JS
    Environ Toxicol Chem; 2015 Apr; 34(4):821-32. PubMed ID: 25475765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WHAM-F
    Tipping E; Lofts S; Stockdale A
    Aquat Toxicol; 2023 May; 258():106503. PubMed ID: 37001198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delineating the dynamic uptake and toxicity of Ni and Co mixtures in Enchytraeus crypticus using a WHAM-FTOX approach.
    He E; Van Gestel CA
    Chemosphere; 2015 Nov; 139():216-22. PubMed ID: 26134674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of WHAM-F
    Tipping E; Lofts S; Keller W
    Aquat Toxicol; 2021 Feb; 231():105708. PubMed ID: 33341508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of proton-metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability.
    Stockdale A; Tipping E; Lofts S; Ormerod SJ; Clements WH; Blust R
    Aquat Toxicol; 2010 Oct; 100(1):112-9. PubMed ID: 20701986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches.
    Farley KJ; Meyer JS; Balistrieri LS; De Schamphelaere KA; Iwasaki Y; Janssen CR; Kamo M; Lofts S; Mebane CA; Naito W; Ryan AC; Santore RC; Tipping E
    Environ Toxicol Chem; 2015 Apr; 34(4):741-53. PubMed ID: 25418584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of waterborne metals in binary mixtures on short-term gill-metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss).
    Niyogi S; Nadella SR; Wood CM
    Aquat Toxicol; 2015 Aug; 165():109-19. PubMed ID: 26057931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating bioavailability into toxicity assessment of Cu-Ni, Cu-Cd, and Ni-Cd mixtures with the extended biotic ligand model and the WHAM-F(tox) approach.
    Qiu H; Vijver MG; He E; Liu Y; Wang P; Xia B; Smolders E; Versieren L; Peijnenburg WJ
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):19213-23. PubMed ID: 26250821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna.
    Meyer JS; Ranville JF; Pontasch M; Gorsuch JW; Adams WJ
    Environ Toxicol Chem; 2015 Apr; 34(4):799-808. PubMed ID: 25336231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal and proton toxicity to lake zooplankton: a chemical speciation based modelling approach.
    Stockdale A; Tipping E; Lofts S; Fott J; Garmo OA; Hruska J; Keller B; Löfgren S; Maberly SC; Majer V; Nierzwicki-Bauer SA; Persson G; Schartau AK; Thackeray SJ; Valois A; Vrba J; Walseng B; Yan N
    Environ Pollut; 2014 Mar; 186():115-25. PubMed ID: 24370669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting the toxicity of metal mixtures.
    Balistrieri LS; Mebane CA
    Sci Total Environ; 2014 Jan; 466-467():788-99. PubMed ID: 23973545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu-Ni, Cu-Zn and Cu-Ag) to lettuce (Lactuca sativa L.).
    Liu Y; Vijver MG; Peijnenburg WJ
    Chemosphere; 2014 Oct; 112():282-8. PubMed ID: 25048917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms.
    Iwasaki Y; Cadmus P; Clements WH
    Aquat Toxicol; 2013 May; 132-133():151-6. PubMed ID: 23501491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity identification evaluation of five metals performed with two organisms (Daphnia magna and Lactuca sativa).
    Fjällborg B; Li B; Nilsson E; Dave G
    Arch Environ Contam Toxicol; 2006 Feb; 50(2):196-204. PubMed ID: 16328613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling toxicity of binary metal mixtures (Cu(2+) -Ag(+) , Cu(2+) -Zn(2+) ) to lettuce, Lactuca sativa, with the biotic ligand model.
    Yen Le TT; Vijver MG; Jan Hendriks A; Peijnenburg WJ
    Environ Toxicol Chem; 2013 Jan; 32(1):137-43. PubMed ID: 23109233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities.
    Balistrieri LS; Mebane CA; Schmidt TS; Keller WB
    Environ Toxicol Chem; 2015 Apr; 34(4):761-76. PubMed ID: 25477294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal accumulation by stream bryophytes, related to chemical speciation.
    Tipping E; Vincent CD; Lawlor AJ; Lofts S
    Environ Pollut; 2008 Dec; 156(3):936-43. PubMed ID: 18541353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.