BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2531894)

  • 1. Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis.
    Dean DA; Davidson AL; Nikaido H
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9134-8. PubMed ID: 2531894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active transport of maltose in membrane vesicles obtained from Escherichia coli cells producing tethered maltose-binding protein.
    Dean DA; Fikes JD; Gehring K; Bassford PJ; Nikaido H
    J Bacteriol; 1989 Jan; 171(1):503-10. PubMed ID: 2644203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of maltose transport in Escherichia coli: transmembrane signaling by periplasmic binding proteins.
    Davidson AL; Shuman HA; Nikaido H
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2360-4. PubMed ID: 1549599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overproduction, solubilization, and reconstitution of the maltose transport system from Escherichia coli.
    Davidson AL; Nikaido H
    J Biol Chem; 1990 Mar; 265(8):4254-60. PubMed ID: 2155217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of ATP as the energy source for maltose transport in Escherichia coli.
    Dean DA; Davidson AL; Nikaido H
    Res Microbiol; 1990; 141(3):348-52. PubMed ID: 2177914
    [No Abstract]   [Full Text] [Related]  

  • 6. Functional mosaicism of membrane proteins in vesicles of Escherichia coli.
    Adler LW; Rosen BP
    J Bacteriol; 1977 Feb; 129(2):959-66. PubMed ID: 190212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy coupling to periplasmic binding protein-dependent transport systems: stoichiometry of ATP hydrolysis during transport in vivo.
    Mimmack ML; Gallagher MP; Pearce SR; Hyde SC; Booth IR; Higgins CF
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8257-61. PubMed ID: 2682642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full engagement of liganded maltose-binding protein stabilizes a semi-open ATP-binding cassette dimer in the maltose transporter.
    Alvarez FJ; Orelle C; Huang Y; Bajaj R; Everly RM; Klug CS; Davidson AL
    Mol Microbiol; 2015 Dec; 98(5):878-94. PubMed ID: 26268698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Quantitative kinetic model of ATP hydrolysis-synthesis by membrane H+-ATPase].
    Kister AE; Mironov AA; Drozdov-Tikhomirov LV
    Mol Biol (Mosk); 1984; 18(6):1476-85. PubMed ID: 6240592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The maltose ABC transporter: action of membrane lipids on the transporter stability, coupling and ATPase activity.
    Bao H; Dalal K; Wang V; Rouiller I; Duong F
    Biochim Biophys Acta; 2013 Aug; 1828(8):1723-30. PubMed ID: 23562402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential Action of MalE and Maltose Allows Coupling ATP Hydrolysis to Translocation in the MalFGK2 Transporter.
    Bao H; Dalal K; Cytrynbaum E; Duong F
    J Biol Chem; 2015 Oct; 290(42):25452-60. PubMed ID: 26338707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy coupling in bacterial periplasmic transport systems. Studies in intact Escherichia coli cells.
    Joshi AK; Ahmed S; Ferro-Luzzi Ames G
    J Biol Chem; 1989 Feb; 264(4):2126-33. PubMed ID: 2644255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Turnover number of Escherichia coli F0F1 ATP synthase for ATP synthesis in membrane vesicles.
    Etzold C; Deckers-Hebestreit G; Altendorf K
    Eur J Biochem; 1997 Jan; 243(1-2):336-43. PubMed ID: 9030757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibition of maltose transport by the unliganded form of the maltose-binding protein of Escherichia coli: experimental findings and mathematical treatment.
    Merino G; Boos W; Shuman HA; Bohl E
    J Theor Biol; 1995 Nov; 177(2):171-9. PubMed ID: 8558904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex.
    Hor LI; Shuman HA
    J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both ATP and the electrochemical potential are required for optimal assembly of pro-OmpA into Escherichia coli inner membrane vesicles.
    Geller BL; Movva NR; Wickner W
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4219-22. PubMed ID: 2872675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Mechanism of the Maltose Transporter Hydrolyzing ATP.
    Huang W; Liao JL
    Biochemistry; 2016 Jan; 55(1):224-31. PubMed ID: 26666844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a catalytic intermediate of the maltose transporter.
    Oldham ML; Khare D; Quiocho FA; Davidson AL; Chen J
    Nature; 2007 Nov; 450(7169):515-21. PubMed ID: 18033289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator.
    Richet E; Raibaud O
    EMBO J; 1989 Mar; 8(3):981-7. PubMed ID: 2524384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy coupling to net K+ transport in Escherichia coli K-12.
    Rhoads DB; Epstein W
    J Biol Chem; 1977 Feb; 252(4):1394-401. PubMed ID: 320207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.