BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2531894)

  • 21. ATP hydrolysis and nucleotide exit enhance maltose translocation in the MalFGK
    Abreu B; Cruz C; Oliveira ASF; Soares CM
    Sci Rep; 2021 May; 11(1):10591. PubMed ID: 34012037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Escherichia coli tat mutant strains are able to transport maltose in the absence of an active malE gene.
    Caldelari I; Palmer T; Sargent F
    Arch Microbiol; 2008 Jun; 189(6):597-604. PubMed ID: 18385983
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active transport of calcium in inverted membrane vesicles of Escherichia coli.
    Rosen BP; McClees JS
    Proc Natl Acad Sci U S A; 1974 Dec; 71(12):5042-6. PubMed ID: 4373740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspects of maltose transport in Escherichia coli: established facts and educated guesses.
    Boos W
    Ann Microbiol (Paris); 1982 Jan; 133A(1):145-51. PubMed ID: 7041737
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex.
    Fillingame RH; Knoebel K; Wopat AE
    J Bacteriol; 1978 Nov; 136(2):570-81. PubMed ID: 152309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of H+-ATPase and proton motive force in ATP-dependent protein translocation in vitro.
    Chen LL; Tai PC
    J Bacteriol; 1986 Jul; 167(1):389-92. PubMed ID: 2873129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP is essential for protein translocation into Escherichia coli membrane vesicles.
    Chen L; Tai PC
    Proc Natl Acad Sci U S A; 1985 Jul; 82(13):4384-8. PubMed ID: 2861605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of sulfite on the ATP hydrolysis and synthesis activities in chloroplasts and cyanobacterial membrane vesicles can be explained by competition with phosphate.
    Bakels RH; Van Wielink JE; Krab K; Van Walraven HS
    Arch Biochem Biophys; 1996 Aug; 332(1):170-4. PubMed ID: 8806722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport.
    Bishop L; Agbayani R; Ambudkar SV; Maloney PC; Ames GF
    Proc Natl Acad Sci U S A; 1989 Sep; 86(18):6953-7. PubMed ID: 2674940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Energy transduction in Escherichia coli. The effect of chaotropic agents on energy coupling in everted membrane vesicles from aerobic and anaerobic cultures.
    Hasan SM; Rosen BP
    Biochim Biophys Acta; 1977 Feb; 459(2):225-40. PubMed ID: 138439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the Escherichia coli lambda receptor in the transport of maltose and maltodextrins.
    Ferenci T; Boos W
    J Supramol Struct; 1980; 13(1):101-16. PubMed ID: 7003263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Purified secB protein of Escherichia coli retards folding and promotes membrane translocation of the maltose-binding protein in vitro.
    Weiss JB; Ray PH; Bassford PJ
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8978-82. PubMed ID: 2848249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP.
    Guihard G; Bénédetti H; Besnard M; Letellier L
    J Biol Chem; 1993 Aug; 268(24):17775-80. PubMed ID: 7688731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components.
    Bohl E; Shuman HA; Boos W
    J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maltose and maltodextrin transport in Escherichia coli.
    Wandersman C
    Ann Microbiol (Paris); 1982 Jan; 133A(1):161-3. PubMed ID: 7041739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase.
    Diez M; Zimmermann B; Börsch M; König M; Schweinberger E; Steigmiller S; Reuter R; Felekyan S; Kudryavtsev V; Seidel CA; Gräber P
    Nat Struct Mol Biol; 2004 Feb; 11(2):135-41. PubMed ID: 14730350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site.
    Kuo PH; Nakamoto RK
    Biochem J; 2000 May; 347 Pt 3(Pt 3):797-805. PubMed ID: 10769185
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reconstitution of maltose transport in malB and malA mutants of Escherichia coli.
    Brass JM
    Ann Microbiol (Paris); 1982 Jan; 133A(1):171-80. PubMed ID: 7041740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Membrane potential stimulated binding of the maltose-binding protein to membrane vesicles of Escherichia coli.
    Richarme G; Meury J; Bouvier J
    Ann Microbiol (Paris); 1982 Jan; 133A(1):199-204. PubMed ID: 7041743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-step purification of Escherichia coli H(+)-ATPase (F0F1) and its reconstitution into liposomes with neurotransmitter transporters.
    Moriyama Y; Iwamoto A; Hanada H; Maeda M; Futai M
    J Biol Chem; 1991 Nov; 266(33):22141-6. PubMed ID: 1834667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.