These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 2531894)

  • 41. Maltose transport in Escherichia coli K12. A comparison of transport kinetics in wild-type and lambda-resistant mutants as measured by fluorescence quenching.
    Szmelcman S; Schwartz M; Silhavy TJ; Boos W
    Eur J Biochem; 1976 May; 65(1):13-9. PubMed ID: 776623
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli.
    Bavoil P; Hofnung M; Nikaido H
    J Biol Chem; 1980 Sep; 255(18):8366-9. PubMed ID: 6997295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of nucleotides on ATP-dependent protein translocation into Escherichia coli membrane vesicles.
    Chen L; Tai PC
    J Bacteriol; 1986 Nov; 168(2):828-32. PubMed ID: 3536863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reconstitution of the histidine periplasmic transport system in membrane vesicles. Energy coupling and interaction between the binding protein and the membrane complex.
    Prossnitz E; Gee A; Ames GF
    J Biol Chem; 1989 Mar; 264(9):5006-14. PubMed ID: 2647746
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Snapshots of the maltose transporter during ATP hydrolysis.
    Oldham ML; Chen J
    Proc Natl Acad Sci U S A; 2011 Sep; 108(37):15152-6. PubMed ID: 21825153
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sterol Extraction from Isolated Plant Plasma Membrane Vesicles Affects H
    Lapshin NK; Piotrovskii MS; Trofimova MS
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944535
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stimulatory effect of low ATP pools on transport of purine nucleosides in cells of Escherichia coli.
    Munch-Petersen A; Pihl NJ
    Proc Natl Acad Sci U S A; 1980 May; 77(5):2519-23. PubMed ID: 6446715
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconstitution of periplasmic transport in inside-out membrane vesicles. Energization by ATP.
    Ames GF; Nikaido K; Groarke J; Petithory J
    J Biol Chem; 1989 Mar; 264(7):3998-4002. PubMed ID: 2645283
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phosphate transport in membrane vesicles from Escherichia coli.
    Konings WN; Rosenberg H
    Biochim Biophys Acta; 1978 Apr; 508(2):370-8. PubMed ID: 346064
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The recognition of maltodextrins by Escherichia coli.
    Ferenci T
    Eur J Biochem; 1980 Jul; 108(2):631-6. PubMed ID: 6997044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active transport of maltose in Escherichia coli K12. Involvement of a "periplasmic" maltose binding protein.
    Kellermann O; Szmelcman S
    Eur J Biochem; 1974 Aug; 47(1):139-49. PubMed ID: 4215651
    [No Abstract]   [Full Text] [Related]  

  • 52. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glutamate transport in membrane vesicles of the wild-type strain and glutamate-utilizing mutants of Escherichia coli.
    Kahane S; Marcus M; Metzer E; Halpern YS
    J Bacteriol; 1976 Mar; 125(3):770-5. PubMed ID: 767326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proline transport activity in Escherichia coli membrane vesicles of different buoyant densities.
    van Heerikhuizen H; Boekhout M; Witholt B
    Biochim Biophys Acta; 1977 Nov; 470(3):453-64. PubMed ID: 336091
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ATP-driven calcium transport in membrane vesicles of Streptococcus sanguis.
    Houng HS; Lynn AR; Rosen BP
    J Bacteriol; 1986 Nov; 168(2):1040-4. PubMed ID: 3096955
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of osmotic pressure on membrane energy-linked functions in Escherichia coli.
    Houssin C; Eynard N; Shechter E; Ghazi A
    Biochim Biophys Acta; 1991 Jan; 1056(1):76-84. PubMed ID: 1984787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Energy transduction in Escherichia coli: physiological and biochemical effects of mutation in the uncB locus.
    Hasan SM; Tsuchiya T; Rosen BP
    J Bacteriol; 1978 Jan; 133(1):108-13. PubMed ID: 145432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel ATP-driven glucose transport system in Escherichia coli.
    Wagner EF; Fabricant JD; Schweiger M
    Eur J Biochem; 1979 Dec; 102(1):231-6. PubMed ID: 391565
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methyl-alpha-maltoside and 5-thiomaltose: analogs transported by the Escherichia coli maltose transport system.
    Ferenci T
    J Bacteriol; 1980 Oct; 144(1):7-11. PubMed ID: 6998971
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The maintenance of the energized membrane state and its relation to active transport in Escherichia coli.
    Rosen BP; Adler LW
    Biochim Biophys Acta; 1975 Apr; 387(1):23-36. PubMed ID: 123782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.