These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 25319101)
1. Intestinal uptake and transport of vitamin B12-loaded soy protein nanoparticles. Zhang J; Field CJ; Vine D; Chen L Pharm Res; 2015 Apr; 32(4):1288-303. PubMed ID: 25319101 [TBL] [Abstract][Full Text] [Related]
2. Efficient Peroral Delivery of Insulin via Vitamin B12 Modified Trimethyl Chitosan Nanoparticles. Ke Z; Guo H; Zhu X; Jin Y; Huang Y J Pharm Pharm Sci; 2015; 18(2):155-70. PubMed ID: 26158281 [TBL] [Abstract][Full Text] [Related]
3. Investigation Of Vitamin B Long L; Lai M; Mao X; Luo J; Yuan X; Zhang LM; Ke Z; Yang L; Deng DY Int J Nanomedicine; 2019; 14():7743-7758. PubMed ID: 31571874 [TBL] [Abstract][Full Text] [Related]
4. Vitamin B12-mediated transport of nanoparticles across Caco-2 cells. Russell-Jones GJ; Arthur L; Walker H Int J Pharm; 1999 Mar; 179(2):247-55. PubMed ID: 10053217 [TBL] [Abstract][Full Text] [Related]
5. Enhancement of scutellarin oral delivery efficacy by vitamin B12-modified amphiphilic chitosan derivatives to treat type II diabetes induced-retinopathy. Wang J; Tan J; Luo J; Huang P; Zhou W; Chen L; Long L; Zhang LM; Zhu B; Yang L; Deng DY J Nanobiotechnology; 2017 Mar; 15(1):18. PubMed ID: 28249594 [TBL] [Abstract][Full Text] [Related]
6. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption. Li Q; Xia D; Tao J; Shen A; He Y; Gan Y; Wang C J Pharm Sci; 2017 Oct; 106(10):3120-3130. PubMed ID: 28559042 [TBL] [Abstract][Full Text] [Related]
7. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. Chalasani KB; Russell-Jones GJ; Jain AK; Diwan PV; Jain SK J Control Release; 2007 Sep; 122(2):141-50. PubMed ID: 17707540 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. Beloqui A; Solinís MÁ; Gascón AR; del Pozo-Rodríguez A; des Rieux A; Préat V J Control Release; 2013 Mar; 166(2):115-23. PubMed ID: 23266764 [TBL] [Abstract][Full Text] [Related]
9. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption. He H; Wang P; Cai C; Yang R; Tang X Int J Pharm; 2015 Sep; 493(1-2):451-9. PubMed ID: 26253378 [TBL] [Abstract][Full Text] [Related]
10. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. Roger E; Lagarce F; Garcion E; Benoit JP J Control Release; 2009 Dec; 140(2):174-81. PubMed ID: 19699246 [TBL] [Abstract][Full Text] [Related]
11. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability. He W; Yang K; Fan L; Lv Y; Jin Z; Zhu S; Qin C; Wang Y; Yin L Int J Pharm; 2015 Nov; 495(1):9-18. PubMed ID: 26325310 [TBL] [Abstract][Full Text] [Related]
12. Preparation, characterization, and in vitro and in vivo investigation of chitosan-coated poly (d,l-lactide-co-glycolide) nanoparticles for intestinal delivery of exendin-4. Wang M; Zhang Y; Feng J; Gu T; Dong Q; Yang X; Sun Y; Wu Y; Chen Y; Kong W Int J Nanomedicine; 2013; 8():1141-54. PubMed ID: 23658482 [TBL] [Abstract][Full Text] [Related]
13. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D₃. Teng Z; Luo Y; Wang Q Food Chem; 2013 Nov; 141(1):524-32. PubMed ID: 23768389 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of soy protein isolate/cellulose nanocrystal composite nanoparticles for curcumin delivery. Wang S; Lu Y; Ouyang XK; Ling J Int J Biol Macromol; 2020 Dec; 165(Pt A):1468-1474. PubMed ID: 33058971 [TBL] [Abstract][Full Text] [Related]
15. Development and application of nanoparticles synthesized with folic acid conjugated soy protein. Teng Z; Luo Y; Wang T; Zhang B; Wang Q J Agric Food Chem; 2013 Mar; 61(10):2556-64. PubMed ID: 23414105 [TBL] [Abstract][Full Text] [Related]
16. Enhanced intestinal absorption of asenapine maleate by fabricating solid lipid nanoparticles using TPGS: elucidation of transport mechanism, permeability across Caco-2 cell line and in vivo pharmacokinetic studies. Patel M; Mundada V; Sawant K Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):144-153. PubMed ID: 30669881 [TBL] [Abstract][Full Text] [Related]
17. Intestinal uptake and transport of albumin nanoparticles: potential for oral delivery. Hashem L; Swedrowska M; Vllasaliu D Nanomedicine (Lond); 2018 Jun; 13(11):1255-1265. PubMed ID: 29949465 [TBL] [Abstract][Full Text] [Related]
18. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery. Neves AR; Queiroz JF; Costa Lima SA; Figueiredo F; Fernandes R; Reis S J Colloid Interface Sci; 2016 Feb; 463():258-65. PubMed ID: 26550783 [TBL] [Abstract][Full Text] [Related]
19. Uptake and transport of a novel anticancer drug-delivery system: lactosyl-norcantharidin-associated N-trimethyl chitosan nanoparticles across intestinal Caco-2 cell monolayers. Guan M; Zhu QL; Liu Y; Bei YY; Gu ZL; Zhang XN; Zhang Q Int J Nanomedicine; 2012; 7():1921-30. PubMed ID: 22605938 [TBL] [Abstract][Full Text] [Related]
20. Nanoparticles composed of the tea polysaccharide-complexed cationic vitamin B Mao X; Long L; Shen J; Lin K; Yin L; Yi J; Zhang LM; Deng DYB; Yang L Food Funct; 2021 Sep; 12(18):8522-8534. PubMed ID: 34312648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]