These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25319207)

  • 1. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect.
    Maram R; Van Howe J; Li M; Azaña J
    Nat Commun; 2014 Oct; 5():5163. PubMed ID: 25319207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable passive Talbot optical waveform amplifier.
    Jeon J; Maram R; van Howe J; Azaña J
    Opt Express; 2018 Mar; 26(6):6872-6879. PubMed ID: 29609374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-power noise-like pulse generation using a 1.56-µm all-fiber laser system.
    Lin SS; Hwang SK; Liu JM
    Opt Express; 2015 Jul; 23(14):18256-68. PubMed ID: 26191882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal Talbot effect of optical dark pulse trains.
    Wu J; Hu J; Brès CS
    Opt Lett; 2022 Feb; 47(4):953-956. PubMed ID: 35167567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a nondeterministic optical noiseless amplifier.
    Ferreyrol F; Barbieri M; Blandino R; Fossier S; Tualle-Brouri R; Grangier P
    Phys Rev Lett; 2010 Mar; 104(12):123603. PubMed ID: 20366532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radio-frequency spectrum analysis of a jittery train after a second-order dispersive Talbot line.
    Chantada L; Fernández-Pousa CR; Flores-Arias MT; Gómez-Reino C
    Appl Opt; 2008 Aug; 47(22):E19-26. PubMed ID: 18670538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discretely programmable microwave photonic filter based on temporal Talbot effects.
    Maram R; Onori D; Azaña J; Chen LR
    Opt Express; 2019 May; 27(10):14381-14391. PubMed ID: 31163888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noiseless amplification and signal-to-noise ratio in single-sideband transmission.
    Mecozzi A; Shtaif M
    Opt Lett; 2003 Feb; 28(3):203-5. PubMed ID: 12656332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier.
    Fu X; Guo X; Shu C
    Sci Rep; 2016 Feb; 6():20180. PubMed ID: 26830136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noiseless independent signal and power amplification.
    Huntington EH; Lam PK; Ralph TC; McClelland DE; Bachor HA
    Opt Lett; 1998 Apr; 23(7):540-2. PubMed ID: 18084570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bit rate and pulse width dependence of four-wave mixing of short optical pulses in semiconductor optical amplifiers.
    Diez S; Mecozzi A; Mørk J
    Opt Lett; 1999 Dec; 24(23):1675-7. PubMed ID: 18079899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brillouin optical time-domain analysis sensor assisted by Brillouin distributed amplification of pump pulses.
    Urricelqui J; Sagues M; Loayssa A
    Opt Express; 2015 Nov; 23(23):30448-58. PubMed ID: 26698524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Talbot effect in fiber gratings and its applications.
    Azaña J; Muriel MA
    Appl Opt; 1999 Nov; 38(32):6700-4. PubMed ID: 18324207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensity-noise suppression in 1950-nm single-frequency fiber laser by bidirectional amplifier configuration.
    Guan X; Yang C; Lin W; Zhao Q; Tan T; Gu Q; Zhou K; Wei X; Yang Z; Xu S
    Opt Lett; 2020 Oct; 45(19):5484-5487. PubMed ID: 33001925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirped pulse amplification of an ultrahigh-repetition-rate Ti:sapphire frequency comb using a tapered semiconductor amplifier.
    Sakamoto T; Yoshioka K
    Opt Lett; 2021 Sep; 46(18):4642-4645. PubMed ID: 34525071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical parametric chirped-pulse-amplification contrast enhancement by regenerative pump spectral filtering.
    Dorrer C; Okishev AV; Begishev IA; Zuegel JD; Smirnov VI; Glebov LB
    Opt Lett; 2007 Aug; 32(16):2378-80. PubMed ID: 17700791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced analog-optical link performance with noiseless phase-sensitive fiber optical parametric amplifiers.
    Zhao P; Kakarla R; Karlsson M; Andrekson PA
    Opt Express; 2020 Aug; 28(16):23534-23544. PubMed ID: 32752348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring complex field waveforms of quadrature amplitude modulation optical signals using a spectrally slicing-and-synthesizing coherent optical spectrum analyzer.
    Igarashi K; Kawabata Y; Urakawa N
    Opt Express; 2020 Jul; 28(15):21560-21570. PubMed ID: 32752431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-band OSNR and chromatic dispersion monitoring using a fibre optical parametric amplifier.
    Ng T; Blows JL; Rochette M; Bolger JA; Littler I; Eggleton B
    Opt Express; 2005 Jul; 13(14):5542-52. PubMed ID: 19498551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.