These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25319499)

  • 1. Surfactant-assisted chemical vapour deposition of high-performance small-diameter GaSb nanowires.
    Yang ZX; Han N; Fang M; Lin H; Cheung HY; Yip S; Wang EJ; Hung T; Wong CY; Ho JC
    Nat Commun; 2014 Oct; 5():5249. PubMed ID: 25319499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Approaching the Hole Mobility Limit of GaSb Nanowires.
    Yang ZX; Yip S; Li D; Han N; Dong G; Liang X; Shu L; Hung TF; Mo X; Ho JC
    ACS Nano; 2015 Sep; 9(9):9268-75. PubMed ID: 26279583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complementary Metal Oxide Semiconductor-Compatible, High-Mobility, ⟨111⟩-Oriented GaSb Nanowires Enabled by Vapor-Solid-Solid Chemical Vapor Deposition.
    Yang ZX; Liu L; Yip S; Li D; Shen L; Zhou Z; Han N; Hung TF; Pun EY; Wu X; Song A; Ho JC
    ACS Nano; 2017 Apr; 11(4):4237-4246. PubMed ID: 28355076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diameter limitation in growth of III-Sb-containing nanowire heterostructures.
    Ek M; Borg BM; Johansson J; Dick KA
    ACS Nano; 2013 Apr; 7(4):3668-75. PubMed ID: 23464707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh Hole Mobility of Sn-Catalyzed GaSb Nanowires for High Speed Infrared Photodetectors.
    Sun J; Peng M; Zhang Y; Zhang L; Peng R; Miao C; Liu D; Han M; Feng R; Ma Y; Dai Y; He L; Shan C; Pan A; Hu W; Yang ZX
    Nano Lett; 2019 Sep; 19(9):5920-5929. PubMed ID: 31374165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition.
    Ji X; Yang X; Yang T
    Nanoscale Res Lett; 2017 Dec; 12(1):428. PubMed ID: 28655220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical properties of GaSb/InAsSb core/shell nanowires.
    Ganjipour B; Sepehri S; Dey AW; Tizno O; Borg BM; Dick KA; Samuelson L; Wernersson LE; Thelander C
    Nanotechnology; 2014 Oct; 25(42):425201. PubMed ID: 25264978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystalline GaSb nanowires synthesized on amorphous substrates: from the formation mechanism to p-channel transistor applications.
    Yang ZX; Wang F; Han N; Lin H; Cheung HY; Fang M; Yip S; Hung T; Wong CY; Ho JC
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10946-52. PubMed ID: 24107082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of antimony-based nanowires using the simple vapor deposition method.
    Zi Y; Zhao Y; Candebat D; Appenzeller J; Yang C
    Chemphyschem; 2012 Jul; 13(10):2585-8. PubMed ID: 22438329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InAs/GaSb core-shell nanowires grown on Si substrates by metal-organic chemical vapor deposition.
    Ji X; Yang X; Du W; Pan H; Luo S; Ji H; Xu HQ; Yang T
    Nanotechnology; 2016 Jul; 27(27):275601. PubMed ID: 27232079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective-Area MOCVD Growth and Carrier-Transport-Type Control of InAs(Sb)/GaSb Core-Shell Nanowires.
    Ji X; Yang X; Du W; Pan H; Yang T
    Nano Lett; 2016 Dec; 16(12):7580-7587. PubMed ID: 27960521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Misfit dislocation free InAs/GaSb core-shell nanowires grown by molecular beam epitaxy.
    Rieger T; Grützmacher D; Lepsa MI
    Nanoscale; 2015 Jan; 7(1):356-64. PubMed ID: 25406991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon doping of InSb nanowires for high-performance p-channel field-effect-transistors.
    Yang ZX; Han N; Wang F; Cheung HY; Shi X; Yip S; Hung T; Lee MH; Wong CY; Ho JC
    Nanoscale; 2013 Oct; 5(20):9671-6. PubMed ID: 24056889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining axial and radial nanowire heterostructures: radial Esaki diodes and tunnel field-effect transistors.
    Dey AW; Svensson J; Ek M; Lind E; Thelander C; Wernersson LE
    Nano Lett; 2013; 13(12):5919-24. PubMed ID: 24224956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface roughness induced electron mobility degradation in InAs nanowires.
    Wang F; Yip S; Han N; Fok K; Lin H; Hou JJ; Dong G; Hung T; Chan KS; Ho JC
    Nanotechnology; 2013 Sep; 24(37):375202. PubMed ID: 23965340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Mobility GaSb Nanostructures Cointegrated with InAs on Si.
    Borg M; Schmid H; Gooth J; Rossell MD; Cutaia D; Knoedler M; Bologna N; Wirths S; Moselund KE; Riel H
    ACS Nano; 2017 Mar; 11(3):2554-2560. PubMed ID: 28225591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices.
    Hou JJ; Han N; Wang F; Xiu F; Yip S; Hui AT; Hung T; Ho JC
    ACS Nano; 2012 Apr; 6(4):3624-30. PubMed ID: 22443352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the surface migration of gold on the growth of silicon nanowires.
    Hannon JB; Kodambaka S; Ross FM; Tromp RM
    Nature; 2006 Mar; 440(7080):69-71. PubMed ID: 16452928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the morphology, composition and crystal structure in gold-seeded GaAs(1-x)Sb(x) nanowires.
    Yuan X; Caroff P; Wong-Leung J; Tan HH; Jagadish C
    Nanoscale; 2015 Mar; 7(11):4995-5003. PubMed ID: 25692266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective-Area Growth of Vertical InGaAs/GaSb Core-Shell Nanowires on Silicon and Dual Switching Properties.
    Gamo H; Lian C; Motohisa J; Tomioka K
    ACS Nano; 2023 Sep; 17(18):18346-18351. PubMed ID: 37615535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.