BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25319598)

  • 21. Additive Manufacturing of Bioactive Poly(trimethylene carbonate)/β-Tricalcium Phosphate Composites for Bone Regeneration.
    Dienel KEG; van Bochove B; Seppälä JV
    Biomacromolecules; 2020 Feb; 21(2):366-375. PubMed ID: 31682406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Poly(trimethylene carbonate) flexible intestinal anastomosis scaffolds to reduce the probability of intestinal fistula and obstruction.
    Ren Y; Li X; Wu L; Pan L; Ji Z; Shi C; Zhang X
    J Mater Chem B; 2021 Jul; 9(26):5340-5351. PubMed ID: 34152354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible scaffolds based on poly(trimethylene carbonate) networks for cardiac tissue engineering.
    Bat E; Harmsen MC; Plantinga JA; van Luyn MJ; Feijen J; Grijpma DW
    J Control Release; 2010 Nov; 148(1):e74-6. PubMed ID: 21529639
    [No Abstract]   [Full Text] [Related]  

  • 25. Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds by stereolithography.
    Elomaa L; Teixeira S; Hakala R; Korhonen H; Grijpma DW; Seppälä JV
    Acta Biomater; 2011 Nov; 7(11):3850-6. PubMed ID: 21763796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds.
    Blanquer SBG; Werner M; Hannula M; Sharifi S; Lajoinie GPR; Eglin D; Hyttinen J; Poot AA; Grijpma DW
    Biofabrication; 2017 Apr; 9(2):025001. PubMed ID: 28402967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Sterk LM; Vermes I; Poot AA; Feijen J; Grijpma DW
    Tissue Eng Part A; 2011 Feb; 17(3-4):381-7. PubMed ID: 20807005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and mechanical properties of photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites.
    Geven MA; Barbieri D; Yuan H; de Bruijn JD; Grijpma DW
    Clin Hemorheol Microcirc; 2015; 60(1):3-11. PubMed ID: 25818155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoprintable Gelatin-
    Brossier T; Volpi G; Vasquez-Villegas J; Petitjean N; Guillaume O; Lapinte V; Blanquer S
    Biomacromolecules; 2021 Sep; 22(9):3873-3883. PubMed ID: 34510908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering.
    Wang F; Li Z; Lannutti JL; Wagner WR; Guan J
    Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of rGO-graft-poly(trimethylene carbonate) for nerve regeneration conduits.
    Guo Z; Kofink S; Chen H; Liang J; Grijpma DW; Poot AA
    Biomed Mater; 2019 Mar; 14(3):034101. PubMed ID: 30690436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable elastomeric networks: highly efficient cross-linking of poly(trimethylene carbonate) by gamma irradiation in the presence of pentaerythritol triacrylate.
    Bat E; Feijen J; Grijpma DW
    Biomacromolecules; 2010 Oct; 11(10):2692-9. PubMed ID: 20839883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels.
    Tzoneva R; Weckwerth C; Seifert B; Behl M; Heuchel M; Tsoneva I; Lendlein A
    J Biomater Sci Polym Ed; 2011; 22(16):2205-26. PubMed ID: 21073803
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography.
    Melchels FP; Feijen J; Grijpma DW
    Biomaterials; 2009 Aug; 30(23-24):3801-9. PubMed ID: 19406467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Creep-resistant elastomeric networks prepared by photocrosslinking fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers.
    Hou Q; Grijpma DW; Feijen J
    Acta Biomater; 2009 Jun; 5(5):1543-51. PubMed ID: 19179128
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.
    Fukushima K
    Biomater Sci; 2016 Jan; 4(1):9-24. PubMed ID: 26323327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Poly(l-lactide-co-ɛ-caprolactone) and Poly(trimethylene carbonate) Membranes for Urethral Regeneration: An In Vitro and In Vivo Study.
    Sartoneva R; Nordback PH; Haimi S; Grijpma DW; Lehto K; Rooney N; Seppänen-Kaijansinkko R; Miettinen S; Lahdes-Vasama T
    Tissue Eng Part A; 2018 Jan; 24(1-2):117-127. PubMed ID: 28463605
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stereolithography in tissue engineering.
    Skoog SA; Goering PL; Narayan RJ
    J Mater Sci Mater Med; 2014 Mar; 25(3):845-56. PubMed ID: 24306145
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering.
    Zhang C; Sangaj N; Hwang Y; Phadke A; Chang CW; Varghese S
    Acta Biomater; 2011 Sep; 7(9):3362-9. PubMed ID: 21664305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of gamma-irradiated poly(trimethylene carbonate).
    Foks MA; Dijkhuis KA; Grijpma DW; Brouwer LA; van Luyn MJ; Feijen J
    J Control Release; 2005 Jan; 101(1-3):325-7. PubMed ID: 15719518
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.