BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25319826)

  • 1. RBBP6 isoforms regulate the human polyadenylation machinery and modulate expression of mRNAs with AU-rich 3' UTRs.
    Di Giammartino DC; Li W; Ogami K; Yashinskie JJ; Hoque M; Tian B; Manley JL
    Genes Dev; 2014 Oct; 28(20):2248-60. PubMed ID: 25319826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of polyadenylation in health and disease.
    Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A
    Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RBBP6 activates the pre-mRNA 3' end processing machinery in humans.
    Boreikaite V; Elliott TS; Chin JW; Passmore LA
    Genes Dev; 2022 Feb; 36(3-4):210-224. PubMed ID: 35177536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De-regulation of the RBBP6 isoform 3/DWNN in human cancers.
    Mbita Z; Meyer M; Skepu A; Hosie M; Rees J; Dlamini Z
    Mol Cell Biochem; 2012 Mar; 362(1-2):249-62. PubMed ID: 22139301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DWNN, a novel ubiquitin-like domain, implicates RBBP6 in mRNA processing and ubiquitin-like pathways.
    Pugh DJ; Ab E; Faro A; Lutya PT; Hoffmann E; Rees DJ
    BMC Struct Biol; 2006 Jan; 6():1. PubMed ID: 16396680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of 3' end processing of mammalian pre-mRNA reveals a central role of RBBP6.
    Schmidt M; Kluge F; Sandmeir F; Kühn U; Schäfer P; Tüting C; Ihling C; Conti E; Wahle E
    Genes Dev; 2022 Feb; 36(3-4):195-209. PubMed ID: 35177537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression analysis and association of RBBP6 with apoptosis in colon cancers.
    Dlamini Z; Rupnarain C; Naicker S; Hull R; Mbita Z
    J Mol Histol; 2016 Apr; 47(2):169-82. PubMed ID: 26905308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of MBNL leads to disruption of developmentally regulated alternative polyadenylation in RNA-mediated disease.
    Batra R; Charizanis K; Manchanda M; Mohan A; Li M; Finn DJ; Goodwin M; Zhang C; Sobczak K; Thornton CA; Swanson MS
    Mol Cell; 2014 Oct; 56(2):311-322. PubMed ID: 25263597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Cancer-Specific Ubiquitin Ligase Drives mRNA Alternative Polyadenylation by Ubiquitinating the mRNA 3' End Processing Complex.
    Yang SW; Li L; Connelly JP; Porter SN; Kodali K; Gan H; Park JM; Tacer KF; Tillman H; Peng J; Pruett-Miller SM; Li W; Potts PR
    Mol Cell; 2020 Mar; 77(6):1206-1221.e7. PubMed ID: 31980388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive analysis of 3' end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogeneous ribonucleoprotein C on cleavage and polyadenylation.
    Gruber AJ; Schmidt R; Gruber AR; Martin G; Ghosh S; Belmadani M; Keller W; Zavolan M
    Genome Res; 2016 Aug; 26(8):1145-59. PubMed ID: 27382025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and function of retinoblastoma binding protein 6 (RBBP6) in human lung cancer.
    Motadi LR; Bhoola KD; Dlamini Z
    Immunobiology; 2011 Oct; 216(10):1065-73. PubMed ID: 21676486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression Analysis of RbBP6 in human cancers: a Prospective biomarker.
    Mbita Z; Hull R; Mbele M; Makhafola T; Dlamini Z
    Anticancer Drugs; 2019 Sep; 30(8):767-773. PubMed ID: 31274515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of pre-mRNA 3' end processing reveals a decisive role of human cleavage factor I in the regulation of 3' UTR length.
    Martin G; Gruber AR; Keller W; Zavolan M
    Cell Rep; 2012 Jun; 1(6):753-63. PubMed ID: 22813749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative 3'-untranslated regions regulate high-salt tolerance of Spartina alterniflora.
    Wang T; Ye W; Zhang J; Li H; Zeng W; Zhu S; Ji G; Wu X; Ma L
    Plant Physiol; 2023 Apr; 191(4):2570-2587. PubMed ID: 36682816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement for cleavage factor II
    Turner RE; Henneken LM; Liem-Weits M; Harrison PF; Swaminathan A; Vary R; Nikolic I; Simpson KJ; Powell DR; Beilharz TH; Dichtl B
    RNA; 2020 Aug; 26(8):969-981. PubMed ID: 32295865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative polyadenylation in the regulation and dysregulation of gene expression.
    Turner RE; Pattison AD; Beilharz TH
    Semin Cell Dev Biol; 2018 Mar; 75():61-69. PubMed ID: 28867199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative cleavage and polyadenylation in health and disease.
    Gruber AJ; Zavolan M
    Nat Rev Genet; 2019 Oct; 20(10):599-614. PubMed ID: 31267064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3' Untranslated Regions Are Modular Entities That Determine Polyadenylation Profiles.
    Lui KH; Geisberg JV; Moqtaderi Z; Struhl K
    Mol Cell Biol; 2022 Sep; 42(9):e0024422. PubMed ID: 35972270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding RNA Binding by the Nonclassical Zinc Finger Protein CPSF30, a Key Factor in Polyadenylation during Pre-mRNA Processing.
    Pritts JD; Oluyadi AA; Huang W; Shimberg GD; Kane MA; Wilks A; Michel SLJ
    Biochemistry; 2021 Mar; 60(10):780-790. PubMed ID: 33615774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CPEB1 coordinates alternative 3'-UTR formation with translational regulation.
    Bava FA; Eliscovich C; Ferreira PG; Miñana B; Ben-Dov C; Guigó R; Valcárcel J; Méndez R
    Nature; 2013 Mar; 495(7439):121-5. PubMed ID: 23434754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.