These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25319901)

  • 1. Artificial multienzyme supramolecular device: highly ordered self-assembly of oligomeric enzymes in vitro and in vivo.
    Gao X; Yang S; Zhao C; Ren Y; Wei D
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14027-30. PubMed ID: 25319901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired genetic engineering of supramolecular assembled formate dehydrogenase with enhanced biocatalysis activities.
    Jiang W; Yang R; Lin P; Hong W; Fang B
    J Biotechnol; 2019 Feb; 292():50-56. PubMed ID: 30690097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembled Multimeric-Enzyme Nanoreactor for Robust and Efficient Biocatalysis.
    Yin L; Guo X; Liu L; Zhang Y; Feng Y
    ACS Biomater Sci Eng; 2018 Jun; 4(6):2095-2099. PubMed ID: 33435032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Peroxidase/Oxidase Multiple Enzyme System Based on Supramolecular Hydrogel and Its Application as a Biocatalyst for Cascade Reactions.
    Qu R; Shen L; Qu A; Wang R; An Y; Shi L
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16694-705. PubMed ID: 26173996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes as Green Catalysts for Precision Macromolecular Synthesis.
    Shoda S; Uyama H; Kadokawa J; Kimura S; Kobayashi S
    Chem Rev; 2016 Feb; 116(4):2307-413. PubMed ID: 26791937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Supramolecular Surface Attachment of Enzyme-Polymer Conjugates for the Design of Biocatalytic Filtration Membranes.
    Moridi N; Corvini PF; Shahgaldian P
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14800-4. PubMed ID: 26461451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the System Performance of the Asymmetric Biosynthesis of d-Pantoic Acid by Using Artificially Self-Assembled Enzymes in
    Li T; Li R; Zhu T; Cui X; Li C; Cui Y; Wu B
    ACS Biomater Sci Eng; 2020 Jan; 6(1):219-224. PubMed ID: 33463190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cascade biocatalysis by multienzyme-nanoparticle assemblies.
    Kang W; Liu J; Wang J; Nie Y; Guo Z; Xia J
    Bioconjug Chem; 2014 Aug; 25(8):1387-94. PubMed ID: 25020147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed supramolecular surface assembly of SNAP-tag fusion proteins.
    Uhlenheuer DA; Wasserberg D; Haase C; Nguyen HD; Schenkel JH; Huskens J; Ravoo BJ; Jonkheijm P; Brunsveld L
    Chemistry; 2012 May; 18(22):6788-94. PubMed ID: 22511333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of artificial enzymes by supramolecular strategies.
    Wang T; Fan X; Hou C; Liu J
    Curr Opin Struct Biol; 2018 Aug; 51():19-27. PubMed ID: 29518619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells.
    Blecha A; Zarschler K; Sjollema KA; Veenhuis M; Rödel G
    Microb Cell Fact; 2005 Oct; 4():28. PubMed ID: 16202167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular electronics; nanowires from self-assembled pi-conjugated systems.
    Schenning AP; Meijer EW
    Chem Commun (Camb); 2005 Jul; (26):3245-58. PubMed ID: 15983639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The first crystal structure of NAD-dependent 3-dehydro-2-deoxy-D-gluconate dehydrogenase from Thermus thermophilus HB8.
    Pampa KJ; Lokanath NK; Kunishima N; Rai RV
    Acta Crystallogr D Biol Crystallogr; 2014 Apr; 70(Pt 4):994-1004. PubMed ID: 24699644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular Assemblies Responsive to Biomolecules toward Biological Applications.
    Shigemitsu H; Hamachi I
    Chem Asian J; 2015 Oct; 10(10):2026-38. PubMed ID: 26152785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical mechanisms and biological significance of supramolecular protein self-assembly.
    Kentsis A; Borden KL
    Curr Protein Pept Sci; 2004 Apr; 5(2):125-34. PubMed ID: 15078223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise Macroscopic Supramolecular Assemblies: Strategies and Applications.
    Cheng M; Shi F
    Chemistry; 2020 Dec; 26(68):15763-15778. PubMed ID: 32524633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentration-dependent supramolecular engineering of hydrogen-bonded nanostructures at surfaces: predicting self-assembly in 2D.
    Ciesielski A; Szabelski PJ; Rżysko W; Cadeddu A; Cook TR; Stang PJ; Samorì P
    J Am Chem Soc; 2013 May; 135(18):6942-50. PubMed ID: 23590179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein self-assembly via supramolecular strategies.
    Bai Y; Luo Q; Liu J
    Chem Soc Rev; 2016 May; 45(10):2756-67. PubMed ID: 27080059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy.
    Moradian-Oldak J; Paine ML; Lei YP; Fincham AG; Snead ML
    J Struct Biol; 2000 Jul; 131(1):27-37. PubMed ID: 10945967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in morphology control of supramolecular fullerene assemblies and its applications.
    Babu SS; Möhwald H; Nakanishi T
    Chem Soc Rev; 2010 Nov; 39(11):4021-35. PubMed ID: 20865187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.