These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 2532001)
1. The influence of Streptococcus mutans on adhesion of Candida albicans to acrylic surfaces in vitro. Branting C; Sund ML; Linder LE Arch Oral Biol; 1989; 34(5):347-53. PubMed ID: 2532001 [TBL] [Abstract][Full Text] [Related]
2. [A morphological study of interactions of Candida albicans and Streptococcus mutans]. Shinada K; Ozaki F; Cordiero JG; Okada S; Shimoyama K; Nagao M; Ichinose S; Yamashita Y Kokubyo Gakkai Zasshi; 1995 Jun; 62(2):281-6. PubMed ID: 7665965 [TBL] [Abstract][Full Text] [Related]
3. Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent. Arzmi MH; Dashper S; Catmull D; Cirillo N; Reynolds EC; McCullough M FEMS Yeast Res; 2015 Aug; 15(5):fov038. PubMed ID: 26054855 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of adherence of Candida albicans, Candida glabrata, and Streptococcus mutans to an acrylic resin modified by experimental coatings. Izumida FE; Moffa EB; Vergani CE; Machado AL; Jorge JH; Giampaolo ET Biofouling; 2014; 30(5):525-33. PubMed ID: 24684564 [TBL] [Abstract][Full Text] [Related]
5. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Gregoire S; Xiao J; Silva BB; Gonzalez I; Agidi PS; Klein MI; Ambatipudi KS; Rosalen PL; Bauserman R; Waugh RE; Koo H Appl Environ Microbiol; 2011 Sep; 77(18):6357-67. PubMed ID: 21803906 [TBL] [Abstract][Full Text] [Related]
6. The influence of morphological variation on Candida albicans adhesion to denture acrylic in vitro. Vasilas A; Molina L; Hoffman M; Haidaris CG Arch Oral Biol; 1992 Aug; 37(8):613-22. PubMed ID: 1514934 [TBL] [Abstract][Full Text] [Related]
8. Adhesion of Streptococcus rattus and Streptococcus mutans to metal surfaces. Branting C; Odén A; Wiatr-Adamczak E; Linder LE; Sund ML Scand J Dent Res; 1988 Jun; 96(3):218-25. PubMed ID: 3164905 [TBL] [Abstract][Full Text] [Related]
9. In vitro antimicrobial activity of propolis and Arnica montana against oral pathogens. Koo H; Gomes BP; Rosalen PL; Ambrosano GM; Park YK; Cury JA Arch Oral Biol; 2000 Feb; 45(2):141-8. PubMed ID: 10716618 [TBL] [Abstract][Full Text] [Related]
10. Binding Force Dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. Hwang G; Marsh G; Gao L; Waugh R; Koo H J Dent Res; 2015 Sep; 94(9):1310-7. PubMed ID: 26138722 [TBL] [Abstract][Full Text] [Related]
11. Effect of Type II Diabetes Mellitus, Candida Albicans and Streptococcus Mutans on the Biofilm Formation on Prosthetic Materials. Gulia S; Bhatt V; Shetty M; Prasad KD; Gupta P J Contemp Dent Pract; 2018 Dec; 19(12):1538-1545. PubMed ID: 30713186 [TBL] [Abstract][Full Text] [Related]
12. Influence of different orthodontic brackets on adherence of microorganisms in vitro. Brusca MI; Chara O; Sterin-Borda L; Rosa AC Angle Orthod; 2007 Mar; 77(2):331-6. PubMed ID: 17319770 [TBL] [Abstract][Full Text] [Related]
13. [Ultrastructure of adherence of Streptococcus mutans MT8148 and its glucosyltransferase deficient mutants]. Bian Z; Fan M; Wei G Zhonghua Kou Qiang Yi Xue Za Zhi; 1997 Mar; 32(2):102-4. PubMed ID: 10677961 [TBL] [Abstract][Full Text] [Related]
14. pH changes of mixed biofilms of Streptococcus mutans and Candida albicans after exposure to sucrose solutions in vitro. Cavazana TP; Pessan JP; Hosida TY; Monteiro DR; Botazzo Delbem AC Arch Oral Biol; 2018 Jun; 90():9-12. PubMed ID: 29524789 [TBL] [Abstract][Full Text] [Related]
15. Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. Sztajer H; Szafranski SP; Tomasch J; Reck M; Nimtz M; Rohde M; Wagner-Döbler I ISME J; 2014 Nov; 8(11):2256-71. PubMed ID: 24824668 [TBL] [Abstract][Full Text] [Related]
16. Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions. Cross SE; Kreth J; Zhu L; Sullivan R; Shi W; Qi F; Gimzewski JK Microbiology (Reading); 2007 Sep; 153(Pt 9):3124-3132. PubMed ID: 17768255 [TBL] [Abstract][Full Text] [Related]
17. Influence of sucrose on growth and sensitivity of Candida albicans alone and in combination with Enterococcus faecalis and Streptococcus mutans to photodynamic therapy. Tomé FM; Paula Ramos L; Freire F; Pereira CA; de Oliveira ICB; Junqueira JC; Jorge AOC; Oliveira LD Lasers Med Sci; 2017 Aug; 32(6):1237-1243. PubMed ID: 28389898 [TBL] [Abstract][Full Text] [Related]
18. Bacterial GtfB Augments Candida albicans Accumulation in Cross-Kingdom Biofilms. Ellepola K; Liu Y; Cao T; Koo H; Seneviratne CJ J Dent Res; 2017 Sep; 96(10):1129-1135. PubMed ID: 28605597 [TBL] [Abstract][Full Text] [Related]
19. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Jenkinson HF; Lala HC; Shepherd MG Infect Immun; 1990 May; 58(5):1429-36. PubMed ID: 2182544 [TBL] [Abstract][Full Text] [Related]
20. Susceptibility of Candida albicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Pereira CA; Romeiro RL; Costa AC; Machado AK; Junqueira JC; Jorge AO Lasers Med Sci; 2011 May; 26(3):341-8. PubMed ID: 21069408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]