These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292 [TBL] [Abstract][Full Text] [Related]
3. Chondrogenic potential of bone marrow- and adipose tissue-derived adult human mesenchymal stem cells. Ronzière MC; Perrier E; Mallein-Gerin F; Freyria AM Biomed Mater Eng; 2010; 20(3):145-58. PubMed ID: 20930322 [TBL] [Abstract][Full Text] [Related]
4. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. Menaa F; Abdelghani A; Menaa B J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559 [TBL] [Abstract][Full Text] [Related]
5. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881 [TBL] [Abstract][Full Text] [Related]
6. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258 [TBL] [Abstract][Full Text] [Related]
7. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
8. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells. Chong PP; Selvaratnam L; Abbas AA; Kamarul T J Orthop Res; 2012 Apr; 30(4):634-42. PubMed ID: 21922534 [TBL] [Abstract][Full Text] [Related]
9. Effect of dynamic loading on MSCs chondrogenic differentiation in 3-D alginate culture. Henrionnet C; Wang Y; Roeder E; Gambier N; Galois L; Mainard D; Bensoussan D; Gillet P; Pinzano A Biomed Mater Eng; 2012; 22(4):209-18. PubMed ID: 22785364 [TBL] [Abstract][Full Text] [Related]
11. TGF-β1, GDF-5, and BMP-2 stimulation induces chondrogenesis in expanded human articular chondrocytes and marrow-derived stromal cells. Murphy MK; Huey DJ; Hu JC; Athanasiou KA Stem Cells; 2015 Mar; 33(3):762-73. PubMed ID: 25377511 [TBL] [Abstract][Full Text] [Related]
12. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. Shadjou N; Hasanzadeh M J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447 [TBL] [Abstract][Full Text] [Related]
13. Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. Luo Y; Shen H; Fang Y; Cao Y; Huang J; Zhang M; Dai J; Shi X; Zhang Z ACS Appl Mater Interfaces; 2015 Mar; 7(11):6331-9. PubMed ID: 25741576 [TBL] [Abstract][Full Text] [Related]
14. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells: potential for bone tissue engineering. Elkhenany H; Amelse L; Lafont A; Bourdo S; Caldwell M; Neilsen N; Dervishi E; Derek O; Biris AS; Anderson D; Dhar M J Appl Toxicol; 2015 Apr; 35(4):367-74. PubMed ID: 25220951 [TBL] [Abstract][Full Text] [Related]
15. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells induced by acellular cartilage sheets. Xue JX; Gong YY; Zhou GD; Liu W; Cao Y; Zhang WJ Biomaterials; 2012 Aug; 33(24):5832-40. PubMed ID: 22608213 [TBL] [Abstract][Full Text] [Related]
16. Graphene-based nanomaterials for drug delivery and tissue engineering. Goenka S; Sant V; Sant S J Control Release; 2014 Jan; 173():75-88. PubMed ID: 24161530 [TBL] [Abstract][Full Text] [Related]
17. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139 [TBL] [Abstract][Full Text] [Related]
18. Chondrogenic differentiation of adult mesenchymal stem cells and embryonic cells in collagen scaffolds. Ng KK; Thatte HS; Spector M J Biomed Mater Res A; 2011 Nov; 99(2):275-82. PubMed ID: 21858916 [TBL] [Abstract][Full Text] [Related]
19. Mechanobiological conditioning of stem cells for cartilage tissue engineering. Schumann D; Kujat R; Nerlich M; Angele P Biomed Mater Eng; 2006; 16(4 Suppl):S37-52. PubMed ID: 16823112 [TBL] [Abstract][Full Text] [Related]
20. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Lisignoli G; Cristino S; Piacentini A; Toneguzzi S; Grassi F; Cavallo C; Zini N; Solimando L; Mario Maraldi N; Facchini A Biomaterials; 2005 Oct; 26(28):5677-86. PubMed ID: 15878373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]