These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2532043)

  • 21. Differential cell photosensitivity following porphyrin photodynamic therapy.
    Gomer CJ; Rucker N; Murphree AL
    Cancer Res; 1988 Aug; 48(16):4539-42. PubMed ID: 2969280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Comparison on the biological activity of three home-made HpDs with that of photofrin II].
    Han R; Xu CX; Li ZR; Cheng YS; Du CZ
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1986 Jun; 8(3):159-64. PubMed ID: 2946453
    [No Abstract]   [Full Text] [Related]  

  • 23. [Photogeneration of singlet oxygen by psoralens].
    Krasnovskiĭ AA; Sukhorukov VL; Potapenko AIa
    Biull Eksp Biol Med; 1983 Sep; 96(9):59-61. PubMed ID: 6616056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular, cellular, and tissue responses following photodynamic therapy.
    Gomer CJ; Ferrario A; Hayashi N; Rucker N; Szirth BC; Murphree AL
    Lasers Surg Med; 1988; 8(5):450-63. PubMed ID: 2976443
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predictions of mathematical models of tissue oxygenation and generation of singlet oxygen during photodynamic therapy.
    Yuan J; Mahama-Relue PA; Fournier RL; Hampton JA
    Radiat Res; 1997 Oct; 148(4):386-94. PubMed ID: 9339955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in NHIK 3025 cells.
    Moan J; Sommer S
    Cancer Res; 1985 Apr; 45(4):1608-10. PubMed ID: 3978628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved investigations of singlet oxygen luminescence in water, in phosphatidylcholine, and in aqueous suspensions of phosphatidylcholine or HT29 cells.
    Baier J; Maier M; Engl R; Landthaler M; Bäumler W
    J Phys Chem B; 2005 Feb; 109(7):3041-6. PubMed ID: 16851318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of pH on the topography of porphyrins in lipid membranes.
    Bronshtein I; Smith KM; Ehrenberg B
    Photochem Photobiol; 2005; 81(2):446-51. PubMed ID: 15581389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uptake and photodynamic efficiency of hematoporphyrin, hydroxyethylvinyldeuteroporphyrin and hematoporphyrin derivative (Photofrin II): a study with isolated mitochondria.
    Dellinger M; Vever-Bizet C; Brault D; Moreno G; Salet C
    Photochem Photobiol; 1990 Feb; 51(2):185-9. PubMed ID: 2139729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Hematoporphyrin--a drug for local photodynamic therapy of endoscopically visible neoplasms].
    Wilde J; Wilde J
    Arch Geschwulstforsch; 1986; 56(5):381-97. PubMed ID: 3767604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoenhancement of lipid peroxidation associated with the generation of reactive oxygen species in hepatic microsomes of hematoporphyrin derivative-treated rats.
    Das M; Mukhtar H; Greenspan ER; Bickers DR
    Cancer Res; 1985 Dec; 45(12 Pt 1):6328-30. PubMed ID: 2998597
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porphyrin photodynamic therapy: principles and clinical applications.
    Doiron DR; Keller GS
    Curr Probl Dermatol; 1986; 15():85-93. PubMed ID: 2936575
    [No Abstract]   [Full Text] [Related]  

  • 33. Radiosensitization of tumours by porphyrins.
    Luksiene Z; Juzenas P; Moan J
    Cancer Lett; 2006 Apr; 235(1):40-7. PubMed ID: 15946797
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photodestruction in vitro of tumour cells sensitized by porphyrins and their conjugates with specific antibodies.
    Papkovskii DB; Savitskii AP; Egorova SG; Sukhin GM; Chissov VI; Krasnovskii AA; Egorov SYu ; Ponomarev GV; Kirillova GV
    Biomed Sci; 1990 Apr; 1(4):401-6. PubMed ID: 2133059
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water-soluble bis(imidazolylporphyrin) self-assemblies with large two-photon absorption cross sections as potential agents for photodynamic therapy.
    Ogawa K; Hasegawa H; Inaba Y; Kobuke Y; Inouye H; Kanemitsu Y; Kohno E; Hirano T; Ogura S; Okura I
    J Med Chem; 2006 Apr; 49(7):2276-83. PubMed ID: 16570924
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential role of reactive oxygen intermediates in photofrin-I- and photofrin-II-mediated photoenhancement of lipid peroxidation in epidermal microsomal membranes.
    Athar M; Mukhtar H; Bickers DR
    J Invest Dermatol; 1988 May; 90(5):652-7. PubMed ID: 2834456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular uptake and photosensitizing properties of hematoporphyrin di-ethers with similar chromatographic properties as the tumorlocalizing fraction of hematoporphyrin derivative.
    Moan J; Rimington C; Sommer S
    Cancer Lett; 1987 Mar; 34(3):283-9. PubMed ID: 3828980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Picosecond fluorescence of R3230AC mammary carcinoma mitochondria after treatment with hematoporphyrin derivative and Photofrin II in vivo.
    Hanzlik CA; Knox RS; Gibson SL; Hilf R
    Photochem Photobiol; 1989 Jul; 50(1):45-53. PubMed ID: 2527374
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of some divalent metal ions on the aging phenomenon of hematoporphyrin and photofrin II.
    Kalia A; Jain V
    Indian J Biochem Biophys; 1989 Aug; 26(4):213-8. PubMed ID: 2534117
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phototoxicity, redox behavior, and pharmacokinetics of benzophenoxazine analogues in EMT-6 murine sarcoma cells.
    Cincotta L; Foley JW; Cincotta AH
    Cancer Res; 1993 Jun; 53(11):2571-80. PubMed ID: 8495421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.