BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25320817)

  • 1. Multi-organ localization combining global-to-local regression and confidence maps.
    Gauriau R; Cuingnet R; Lesage D; Bloch I
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 3):337-44. PubMed ID: 25320817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-organ localization with cascaded global-to-local regression and shape prior.
    Gauriau R; Cuingnet R; Lesage D; Bloch I
    Med Image Anal; 2015 Jul; 23(1):70-83. PubMed ID: 25974326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of hierarchical multi-organ statistical atlases and their application to multi-organ segmentation from CT images.
    Okada T; Yokota K; Hori M; Nakamoto M; Nakamura H; Sato Y
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):502-9. PubMed ID: 18979784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images.
    Chu C; Oda M; Kitasaka T; Misawa K; Fujiwara M; Hayashi Y; Nimura Y; Rueckert D; Mori K
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):165-72. PubMed ID: 24579137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abdominal multi-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Anal; 2015 Dec; 26(1):1-18. PubMed ID: 26277022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Granular computing in model based abdominal organs detection.
    Juszczyk J; Pietka E; PyciƄski B
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():121-30. PubMed ID: 25804441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medical image analysis of 3D CT images based on extension of Haralick texture features.
    Tesar L; Shimizu A; Smutek D; Kobatake H; Nawano S
    Comput Med Imaging Graph; 2008 Sep; 32(6):513-20. PubMed ID: 18614335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-organ segmentation from multi-phase abdominal CT via 4D graphs using enhancement, shape and location optimization.
    Linguraru MG; Pura JA; Chowdhury AS; Summers RM
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):89-96. PubMed ID: 20879387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors.
    Okada T; Linguraru MG; Hori M; Summers RM; Tomiyama N; Sato Y
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 3):275-82. PubMed ID: 24505771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical 4D graphs for multi-organ abdominal segmentation from multiphase CT.
    Linguraru MG; Pura JA; Pamulapati V; Summers RM
    Med Image Anal; 2012 May; 16(4):904-14. PubMed ID: 22377657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-organ segmentation with missing organs in abdominal CT images.
    Suzuki M; Linguraru MG; Okada K
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):418-25. PubMed ID: 23286158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Airway tree extraction with locally optimal paths.
    Lo P; Sporring J; Pedersen JJ; de Bruijne M
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):51-8. PubMed ID: 20426095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory.
    Lu C; Zheng Y; Birkbeck N; Zhang J; Kohlberger T; Tietjen C; Boettger T; Duncan JS; Zhou SK
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):462-9. PubMed ID: 23286081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistical location model for abdominal organ localization.
    Yao J; Summers RM
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):9-17. PubMed ID: 20426090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Segmentation of liver and spleen based on computational anatomy models.
    Dong C; Chen YW; Foruzan AH; Lin L; Han XH; Tateyama T; Wu X; Xu G; Jiang H
    Comput Biol Med; 2015 Dec; 67():146-60. PubMed ID: 26551453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.
    Saito A; Nawano S; Shimizu A
    Med Image Anal; 2016 Feb; 28():46-65. PubMed ID: 26716720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic detection and segmentation of kidneys in 3D CT images using random forests.
    Cuingnet R; Prevost R; Lesage D; Cohen LD; Mory B; Ardon R
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):66-74. PubMed ID: 23286115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic segmentation of bladder and prostate using coupled 3D deformable models.
    Costa MJ; Delingette H; Novellas S; Ayache N
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):252-60. PubMed ID: 18051066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.