BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25320820)

  • 1. 3D spine reconstruction of postoperative patients from multi-level manifold ensembles.
    Kadoury S; Labelle H; Parent S
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 3):361-8. PubMed ID: 25320820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postoperative 3D spine reconstruction by navigating partitioning manifolds.
    Kadoury S; Labelle H; Parent S
    Med Phys; 2016 Mar; 43(3):1045-56. PubMed ID: 26936692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic inference of articulated spine models in CT images using high-order Markov Random Fields.
    Kadoury S; Labelle H; Paragios N
    Med Image Anal; 2011 Aug; 15(4):426-37. PubMed ID: 21354853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine.
    Benameur S; Mignotte M; Labelle H; De Guise JA
    IEEE Trans Biomed Eng; 2005 Dec; 52(12):2041-57. PubMed ID: 16366228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional (3-D) reconstruction of the spine from a single X-ray image and prior vertebra models.
    Novosad J; Cheriet F; Petit Y; Labelle H
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1628-39. PubMed ID: 15376511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast 3D spine reconstruction of postoperative patients using a multilevel statistical model.
    Lecron F; Boisvert J; Mahmoudi S; Labelle H; Benjelloun M
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):446-53. PubMed ID: 23286079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spine segmentation using articulated shape models.
    Klinder T; Wolz R; Lorenz C; Franz A; Ostermann J
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):227-34. PubMed ID: 18979752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface/volume-based articulated 3D spine inference through Markov random fields.
    Kadoury S; Paragios N
    Med Image Comput Comput Assist Interv; 2009; 12(Pt 2):92-9. PubMed ID: 20426100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional reconstruction of the scoliotic spine and pelvis from uncalibrated biplanar x-ray images.
    Kadoury S; Cheriet F; Dansereau J; Labelle H
    J Spinal Disord Tech; 2007 Apr; 20(2):160-7. PubMed ID: 17414987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive 3D reconstruction of the spine from radiographs using a statistical shape model and second-order cone programming.
    Boisvert J; Moura DC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5726-9. PubMed ID: 22255640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of pelvic and spinal postural patterns in upright position. Specific cases of scoliotic patients.
    Berthonnaud E; Dimnet J; Hilmi R
    Comput Med Imaging Graph; 2009 Dec; 33(8):634-43. PubMed ID: 19635659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D detailed reconstruction of vertebrae with low dose digital stereoradiography.
    Le Bras A; Laporte S; Mitton D; de Guise JA; Skalli W
    Stud Health Technol Inform; 2002; 91():286-90. PubMed ID: 15457739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling 2D/3D registration method and statistical model to perform 3D reconstruction from partial x-rays images data.
    Cresson T; Chav R; Branchaud D; Humbert L; Godbout B; Aubert B; Skalli W; De Guise JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1008-11. PubMed ID: 19964494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective incorporation of spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.
    Zheng G
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):922-9. PubMed ID: 18982693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D/2D image registration: the impact of X-ray views and their number.
    Tomazevic D; Likar B; Pernus F
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):450-7. PubMed ID: 18051090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear embedding towards articulated spine shape inference using higher-order MRFs.
    Kadoury S; Paragios N
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):579-86. PubMed ID: 20879447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rule-based fuzzy classifier for spinal deformities.
    Birtane S; Korkmaz H
    Biomed Mater Eng; 2014; 24(6):3311-9. PubMed ID: 25227041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertebrae localization in pathological spine CT via dense classification from sparse annotations.
    Glocker B; Zikic D; Konukoglu E; Haynor DR; Criminisi A
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):262-70. PubMed ID: 24579149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust registration of longitudinal spine CT.
    Glocker B; Zikic D; Haynor DR
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):251-8. PubMed ID: 25333125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D registration of MR and X-ray spine images using an articulated model.
    Harmouche R; Cheriet F; Labelle H; Dansereau J
    Comput Med Imaging Graph; 2012 Jul; 36(5):410-8. PubMed ID: 22494614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.