These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 25320951)

  • 21. The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions.
    Zhao W; Dhar S
    J Assoc Res Otolaryngol; 2010 Mar; 11(1):53-67. PubMed ID: 19798532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-term sound conditioning increases distortion product otoacoustic emission amplitudes and decreases olivocochlear efferent reflex strength.
    Peng JH; Tao ZZ; Huang ZW
    Neuroreport; 2007 Jul; 18(11):1167-70. PubMed ID: 17589320
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contralateral inhibition of distortion product otoacoustic emissions in young noise-exposed Veterans.
    Bramhall NF; Kampel SD; Reavis KM; Konrad-Martin D
    J Acoust Soc Am; 2022 Dec; 152(6):3562. PubMed ID: 36586855
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aging of the medial olivocochlear reflex and associations with speech perception.
    Abdala C; Dhar S; Ahmadi M; Luo P
    J Acoust Soc Am; 2014 Feb; 135(2):754-65. PubMed ID: 25234884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency tuning of the contralateral medial olivocochlear reflex in humans.
    Zhao W; Dhar S
    J Neurophysiol; 2012 Jul; 108(1):25-30. PubMed ID: 22457463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lack of correlation between medial olivocochlear reflex strength and sentence recognition in noise.
    Mertes IB; Stutz AL
    Int J Audiol; 2023 Feb; 62(2):110-117. PubMed ID: 35195043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human medial olivocochlear reflex: Contralateral activation effect on low and high frequency cochlear response.
    Jamos AM; Kaf WA; Chertoff ME; Ferraro JA
    Hear Res; 2020 Apr; 389():107925. PubMed ID: 32088636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distortion product otoacoustic emission contralateral suppression functions obtained with ramped stimuli.
    Purcell DW; Butler BE; Saunders TJ; Allen P
    J Acoust Soc Am; 2008 Oct; 124(4):2133-48. PubMed ID: 19062854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Responses of medial olivocochlear neurons. Specifying the central pathways of the medial olivocochlear reflex.
    Brown MC; de Venecia RK; Guinan JJ
    Exp Brain Res; 2003 Dec; 153(4):491-8. PubMed ID: 14557911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation of distortion product otoacoustic emissions predicts susceptibility to acoustic over-exposure in alert rabbits.
    Luebke AE; Stagner BB; Martin GK; Lonsbury-Martin BL
    J Acoust Soc Am; 2014 Apr; 135(4):1941-9. PubMed ID: 25234992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contralateral suppression of otoacoustic emissions in pre-school children.
    Jedrzejczak WW; Pilka E; Skarzynski PH; Skarzynski H
    Int J Pediatr Otorhinolaryngol; 2020 May; 132():109915. PubMed ID: 32028191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of 100Hz amplitude modulation on the human medial olivocochlear reflex.
    Boothalingam S; Purcell D; Scollie S
    Neurosci Lett; 2014 Sep; 580():56-61. PubMed ID: 25102324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contralateral noise has possible asymmetric frequency-sensitive effect on the 2F1-F2 otoacoustic emission in humans.
    Atcherson SR; Martin MJ; Lintvedt R
    Neurosci Lett; 2008 Jun; 438(1):107-10. PubMed ID: 18472335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Medial olivocochlear-induced transient-evoked otoacoustic emission amplitude shifts in individual subjects.
    Goodman SS; Mertes IB; Lewis JD; Weissbeck DK
    J Assoc Res Otolaryngol; 2013 Dec; 14(6):829-42. PubMed ID: 23982894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synchronized Spontaneous Otoacoustic Emissions Provide a Signal-to-Noise Ratio Advantage in Medial-Olivocochlear Reflex Assays.
    Lewis JD
    J Assoc Res Otolaryngol; 2018 Feb; 19(1):53-65. PubMed ID: 29134475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of the distribution of medial olivocochlear acoustic reflex strengths across normal-hearing individuals via otoacoustic emissions.
    Backus BC; Guinan JJ
    J Assoc Res Otolaryngol; 2007 Dec; 8(4):484-96. PubMed ID: 17932717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Type 2 Diabetes on Otoacoustic Emissions and the Medial Olivocochlear Reflex.
    Eren E; Harman E; Arslanoğlu S; Önal K
    Otolaryngol Head Neck Surg; 2014 Jun; 150(6):1033-9. PubMed ID: 24671462
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.