These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 25321039)

  • 21. An optofluidic conveyor for particle transportation based on a fiber array and photothermal convection.
    Zhan W; Wu R; Gao K; Zheng J; Song W
    Lab Chip; 2020 Oct; 20(21):4063-4070. PubMed ID: 33021302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of pronounced Fano resonances and tuning of subwavelength spatial light distribution in plasmonic pentamers.
    Rahmani M; Lukiyanchuk B; Ng B; Tavakkoli K G A; Liew YF; Hong MH
    Opt Express; 2011 Mar; 19(6):4949-56. PubMed ID: 21445130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controllable transportation of microparticles along structured waveguides by the plasmonic spin-hall effect.
    Liu W; Zhang Y; Min C; Yuan X
    Opt Express; 2022 May; 30(10):16094-16103. PubMed ID: 36221461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical Characteristics of Double Layered Plasmonic Structure Using Nanopatterning Process.
    Kim DG; Kim SH; Ki HC; Kim TU; Kim HS; Choi YW; Jo MH; Shin JC
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1913-1916. PubMed ID: 29448682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waveguide-fed optical hybrid plasmonic patch nano-antenna.
    Yousefi L; Foster AC
    Opt Express; 2012 Jul; 20(16):18326-35. PubMed ID: 23038383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity.
    Wang L; Cao Y; Zhu T; Feng R; Sun F; Ding W
    Opt Express; 2017 Nov; 25(24):29761-29768. PubMed ID: 29221012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.
    Schmidt OA; Euser TG; Russell PS
    Opt Express; 2013 Dec; 21(24):29383-91. PubMed ID: 24514492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptive on-chip control of nano-optical fields with optoplasmonic vortex nanogates.
    Boriskina SV; Reinhard BM
    Opt Express; 2011 Oct; 19(22):22305-15. PubMed ID: 22109072
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical trapping force combining an optical fiber probe and an AFM metallic probe.
    Liu B; Yang L; Wang Y
    Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.
    Pan XM; Xu KJ; Yang ML; Sheng XQ
    Opt Express; 2015 Mar; 23(5):6130-44. PubMed ID: 25836836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A high throughput supra-wavelength plasmonic bull's eye photon sorter spatially and spectrally multiplexed on silica optical fiber facet.
    Arabi HE; Joe HE; Nazari T; Min BK; Oh K
    Opt Express; 2013 Nov; 21(23):28083-94. PubMed ID: 24514322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bidirectional Transport of Nanoparticles and Cells with a Bio-Conveyor Belt.
    Liu X; Wu Y; Xu X; Li Y; Zhang Y; Li B
    Small; 2019 Dec; 15(50):e1905209. PubMed ID: 31631563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron beam lithography designed silver nano-disks used as label free nano-biosensors based on localized surface plasmon resonance.
    Cinel NA; Bütün S; Özbay E
    Opt Express; 2012 Jan; 20(3):2587-97. PubMed ID: 22330497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dressing plasmon resonance with particle-microcavity architecture for efficient nano-optical trapping and sensing.
    Zhang H; Zhou Y; Yu X; Luan F; Xu J; Ong HC; Ho HP
    Opt Lett; 2014 Feb; 39(4):873-6. PubMed ID: 24562229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bose-Einstein condensation on a microelectronic chip.
    Hänsel W; Hommelhoff P; Hänsch TW; Reichel J
    Nature; 2001 Oct; 413(6855):498-501. PubMed ID: 11586353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-line rainbow trapping based on plasmonic gratings in optical microfibers.
    Guan C; Shi J; Ding M; Wang P; Hua P; Yuan L; Brambilla G
    Opt Express; 2013 Jul; 21(14):16552-60. PubMed ID: 23938506
    [TBL] [Abstract][Full Text] [Related]  

  • 37. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic characteristic analysis and startup optimization design of an intermediate drive belt conveyor with non-uniform load.
    Feng Y; Zhang M; Li G; Meng G
    Sci Prog; 2020; 103(1):36850419881089. PubMed ID: 31829885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient Prediction and Analysis of Optical Trapping at Nanoscale via Finite Element Tearing and Interconnecting Method.
    Wan T; Tang B
    Nanoscale Res Lett; 2019 Aug; 14(1):294. PubMed ID: 31456066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Model predictive control based on reduced order models applied to belt conveyor system.
    Chen W; Li X
    ISA Trans; 2016 Nov; 65():350-360. PubMed ID: 27645466
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.