These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 25321206)

  • 1. Analytic theory of photoacoustic wave generation from a spheroidal droplet.
    Li Y; Fang H; Min C; Yuan X
    Opt Express; 2014 Aug; 22(17):19953-69. PubMed ID: 25321206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating photoacoustic waves produced by individual biological particles with spheroidal wave functions.
    Li Y; Fang H; Min C; Yuan X
    Sci Rep; 2015 Oct; 5():14801. PubMed ID: 26442830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic pulse wave forming along the rotation axis of an ellipsoid droplet: a geometric calculation study.
    Li Y; Fang H
    Appl Opt; 2013 Dec; 52(34):8258-69. PubMed ID: 24513827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light scattering by a spheroidal particle.
    Asano S; Yamamoto G
    Appl Opt; 1975 Jan; 14(1):29-49. PubMed ID: 20134829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spheroidal harmonic expansions for the solution of Laplace's equation for a point source near a sphere.
    Majić MRA; Auguié B; Le Ru EC
    Phys Rev E; 2017 Mar; 95(3-1):033307. PubMed ID: 28415316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mixed Rossby-gravity wave on the spherical Earth.
    Paldor N; Fouxon I; Shamir O; Garfinkel CI
    Q J R Meteorol Soc; 2018 Jul; 144(715):1820-1830. PubMed ID: 31031423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method.
    Reck K; Thomsen EV; Hansen O
    Opt Express; 2011 Jan; 19(3):1808-23. PubMed ID: 21368995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light scattering properties of spheroidal particles.
    Asano S
    Appl Opt; 1979 Mar; 18(5):712-23. PubMed ID: 20208804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates.
    Xu F; Ren K; Cai X
    J Opt Soc Am A Opt Image Sci Vis; 2007 Jan; 24(1):109-18. PubMed ID: 17164849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of spheroidal and eigenfunction-expansion trial functions for a membrane in an infinite baffle.
    Mellow T; Kärkkäinen L
    J Acoust Soc Am; 2008 May; 123(5):2598-602. PubMed ID: 18529179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical treatment of the polychromatic spatially multiplexed volume holographic grating.
    Brotherton-Ratcliffe D
    Appl Opt; 2012 Oct; 51(30):7188-99. PubMed ID: 23089771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Network Simulation Method for Numerical Solution of the Nonlinear Poisson-Boltzmann Equation for a Spheroidal Surface.
    Poza AJ; López-García JJ; Hayas A; Horno J
    J Colloid Interface Sci; 1999 Nov; 219(2):241-249. PubMed ID: 10534383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural information theory based on electronic configurations.
    Barrett TW
    TIT J Life Sci; 1975; 5(1-2):29-42. PubMed ID: 1188936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axisymmetric scattering of scalar waves by spheroids.
    Lekner J; Boyack R
    J Acoust Soc Am; 2011 Jun; 129(6):3465-9. PubMed ID: 21682372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates.
    Schulz FM; Stamnes K; Stamnes JJ
    Appl Opt; 1998 Nov; 37(33):7875-96. PubMed ID: 18301630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of the Dielectric Increment and Characteristic Time of the LFDD in Colloidal Suspensions of Spheroidal Particles.
    Grosse C; Pedrosa S; Shilov VN
    J Colloid Interface Sci; 1999 Dec; 220(1):31-41. PubMed ID: 10550238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulations of photoacoustic wave propagation using a finite-difference time-domain method with Berenger's perfectly matched layers.
    Sheu YL; Li PC
    J Acoust Soc Am; 2008 Dec; 124(6):3471-80. PubMed ID: 19206776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating the fine structure of a Fabry-Perot resonator using spheroidal wave functions.
    Zeppenfeld M; Pinkse PW
    Opt Express; 2010 Apr; 18(9):9580-91. PubMed ID: 20588805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of high amplitude compressions and rarefactions in a photoacoustically excited droplet.
    Yan X; Diebold GJ
    Photoacoustics; 2021 Sep; 23():100289. PubMed ID: 34386348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.