These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25321222)

  • 21. In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus.
    Favazza CP; Jassim O; Cornelius LA; Wang LV
    J Biomed Opt; 2011; 16(1):016015. PubMed ID: 21280921
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging.
    Bitton R; Zemp R; Yen J; Wang LV; Shung KK
    IEEE Trans Med Imaging; 2009 Aug; 28(8):1190-7. PubMed ID: 19131292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast 3-D temporal focusing microscopy using an electrically tunable lens.
    Jiang J; Zhang D; Walker S; Gu C; Ke Y; Yung WH; Chen SC
    Opt Express; 2015 Sep; 23(19):24362-8. PubMed ID: 26406641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simplified method for ultra high-resolution photoacoustic microscopy via transient absorption.
    Mattison SP; Applegate BE
    Opt Lett; 2014 Aug; 39(15):4474-7. PubMed ID: 25078206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Miniature probe for all-optical double gradient-index lenses photoacoustic microscopy.
    Guo Z; Li G; Chen SL
    J Biophotonics; 2018 Dec; 11(12):e201800147. PubMed ID: 30003707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy.
    Hu S; Maslov K; Wang LV
    Opt Express; 2009 Apr; 17(9):7688-93. PubMed ID: 19399148
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries.
    Jiang B; Yang X; Luo Q
    Opt Express; 2016 Sep; 24(18):20167-76. PubMed ID: 27607624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study.
    Xi L; Duan C; Xie H; Jiang H
    Appl Opt; 2013 Mar; 52(9):1928-31. PubMed ID: 23518738
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design of a high frequency array based photoacoustic microscopy system for micro-vascular imaging.
    Bitton R; Zemp R; Yen J; Wang LH; Shung Kk
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2175-8. PubMed ID: 18002420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bessel acoustic-beam acoustic lens for extending the depth of field of detection in optical-resolution photoacoustic microscopy.
    Zeng J; Chen A; Li Z; Song X
    Appl Opt; 2023 Jan; 62(1):255-259. PubMed ID: 36606872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Volumetric HiLo microscopy employing an electrically tunable lens.
    Philipp K; Smolarski A; Koukourakis N; Fischer A; Stürmer M; Wallrabe U; Czarske JW
    Opt Express; 2016 Jun; 24(13):15029-41. PubMed ID: 27410654
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optoacoustic imaging of subcutaneous microvasculature with a class one laser.
    Bost W; Lemor R; Fournelle M
    IEEE Trans Med Imaging; 2014 Sep; 33(9):1900-4. PubMed ID: 24876111
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic OCT imaging with focus extension by ultrahigh-speed acousto-optic tunable lens and stroboscopic illumination.
    Grulkowski I; Szulzycki K; Wojtkowski M
    Opt Express; 2014 Dec; 22(26):31746-60. PubMed ID: 25607144
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axial scanning in confocal microscopy employing adaptive lenses (CAL).
    Koukourakis N; Finkeldey M; Stürmer M; Leithold C; Gerhardt NC; Hofmann MR; Wallrabe U; Czarske JW; Fischer A
    Opt Express; 2014 Mar; 22(5):6025-39. PubMed ID: 24663938
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.
    Zemp RJ; Song L; Bitton R; Shung KK; Wang LV
    Opt Express; 2008 May; 16(11):7915-28. PubMed ID: 18545502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective.
    Wang H; Yang X; Liu Y; Jiang B; Luo Q
    Opt Express; 2013 Oct; 21(20):24210-8. PubMed ID: 24104331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field.
    Chen HS; Lin YH
    Opt Express; 2013 Jul; 21(15):18079-88. PubMed ID: 23938679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined photoacoustic and magneto-acoustic imaging.
    Qu M; Mallidi S; Mehrmohammadi M; Ma LL; Johnston KP; Sokolov K; Emelianov S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4763-6. PubMed ID: 19964846
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrically Tunable Lens (ETL)-Based Variable Focus Imaging System for Parametric Surface Texture Analysis of Materials.
    Nirwan JS; Lou S; Hussain S; Nauman M; Hussain T; Conway BR; Ghori MU
    Micromachines (Basel); 2021 Dec; 13(1):. PubMed ID: 35056182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrically tunable lens speeds up 3D orbital tracking.
    Annibale P; Dvornikov A; Gratton E
    Biomed Opt Express; 2015 Jun; 6(6):2181-90. PubMed ID: 26114037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.