BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 25321225)

  • 1. Efficient generation of THz pulses with 0.4 mJ energy.
    Fülöp JA; Ollmann Z; Lombosi C; Skrobol C; Klingebiel S; Pálfalvi L; Krausz F; Karsch S; Hebling J
    Opt Express; 2014 Aug; 22(17):20155-63. PubMed ID: 25321225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations.
    Wu X; Carbajo S; Ravi K; Ahr F; Cirmi G; Zhou Y; Mücke OD; Kärtner FX
    Opt Lett; 2014 Sep; 39(18):5403-6. PubMed ID: 26466283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of sub-mJ terahertz pulses by optical rectification.
    Fülöp JA; Pálfalvi L; Klingebiel S; Almási G; Krausz F; Karsch S; Hebling J
    Opt Lett; 2012 Feb; 37(4):557-9. PubMed ID: 22344105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses.
    Wu XJ; Ma JL; Zhang BL; Chai SS; Fang ZJ; Xia CY; Kong DY; Wang JG; Liu H; Zhu CQ; Wang X; Ruan CJ; Li YT
    Opt Express; 2018 Mar; 26(6):7107-7116. PubMed ID: 29609397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate.
    Huang SW; Granados E; Huang WR; Hong KH; Zapata LE; Kärtner FX
    Opt Lett; 2013 Mar; 38(5):796-8. PubMed ID: 23455302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient generation of a high-field terahertz pulse train in bulk lithium niobate crystals by optical rectification.
    Tian Q; Xu H; Wang Y; Liang Y; Tan Y; Ning X; Yan L; Du Y; Li R; Hua J; Huang W; Tang C
    Opt Express; 2021 Mar; 29(6):9624-9634. PubMed ID: 33820386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of 0.19-mJ THz pulses in LiNbO
    Zhong SC; Li J; Zhai ZH; Zhu LG; Li J; Zhou PW; Zhao JH; Li ZR
    Opt Express; 2016 Jun; 24(13):14828-35. PubMed ID: 27410634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of 13.9-mJ Terahertz Radiation from Lithium Niobate Materials.
    Wu X; Kong D; Hao S; Zeng Y; Yu X; Zhang B; Dai M; Liu S; Wang J; Ren Z; Chen S; Sang J; Wang K; Zhang D; Liu Z; Gui J; Yang X; Xu Y; Leng Y; Li Y; Song L; Tian Y; Li R
    Adv Mater; 2023 Jun; 35(23):e2208947. PubMed ID: 36932897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pump pulse width and temperature effects in lithium niobate for efficient THz generation.
    Vicario C; Monoszlai B; Lombosi C; Mareczko A; Courjaud A; Fülöp JA; Hauri CP
    Opt Lett; 2013 Dec; 38(24):5373-6. PubMed ID: 24322261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling up the energy of THz pulses created by optical rectification.
    Stepanov A; Kuhl J; Kozma I; Riedle E; Almási G; Hebling J
    Opt Express; 2005 Jul; 13(15):5762-8. PubMed ID: 19498579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards generation of mJ-level ultrashort THz pulses by optical rectification.
    Fülöp JA; Pálfalvi L; Hoffmann MC; Hebling J
    Opt Express; 2011 Aug; 19(16):15090-7. PubMed ID: 21934870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask.
    Avestisyan Y; Zhang C; Kawayama I; Murakami H; Somekawa T; Chosrowjan H; Fujita M; Tonouchi M
    Opt Express; 2012 Nov; 20(23):25752-7. PubMed ID: 23187392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range.
    Wu X; Zhou C; Huang WR; Ahr F; Kärtner FX
    Opt Express; 2015 Nov; 23(23):29729-37. PubMed ID: 26698455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. THz generation using a reflective stair-step echelon.
    Ofori-Okai BK; Sivarajah P; Ronny Huang W; Nelson KA
    Opt Express; 2016 Mar; 24(5):5057-5068. PubMed ID: 29092334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling high repetition rate nonlinear THz science with a kilowatt-class sub-100 fs laser source.
    Kramer PL; Windeler MKR; Mecseki K; Champenois EG; Hoffmann MC; Tavella F
    Opt Express; 2020 May; 28(11):16951-16967. PubMed ID: 32549507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of high-energy terahertz sources based on optical rectification.
    Fülöp JA; Pálfalvi L; Almási G; Hebling J
    Opt Express; 2010 Jun; 18(12):12311-27. PubMed ID: 20588357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical generation of single-cycle 10 MW peak power 100 GHz waves.
    Wu X; Calendron AL; Ravi K; Zhou C; Hemmer M; Reichert F; Zhang D; Cankaya H; Zapata LE; Matlis NH; Kärtner FX
    Opt Express; 2016 Sep; 24(18):21059-69. PubMed ID: 27607709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tilted pulse front pumping techniques for efficient terahertz pulse generation.
    Tóth G; Polónyi G; Hebling J
    Light Sci Appl; 2023 Oct; 12(1):256. PubMed ID: 37872176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bandwidth tunable THz wave generation in large-area periodically poled lithium niobate.
    Zhang C; Avetisyan Y; Glosser A; Kawayama I; Murakami H; Tonouchi M
    Opt Express; 2012 Apr; 20(8):8784-90. PubMed ID: 22513589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge.
    Polónyi G; Monoszlai B; Gäumann G; Rohwer EJ; Andriukaitis G; Balciunas T; Pugzlys A; Baltuska A; Feurer T; Hebling J; Fülöp JA
    Opt Express; 2016 Oct; 24(21):23872-23882. PubMed ID: 27828222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.