These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25321407)

  • 21. Synthesis of substituted benzenes and phenols by ring-closing olefin metathesis.
    Yoshida K; Takahashi H; Imamoto T
    Chemistry; 2008; 14(27):8246-61. PubMed ID: 18663714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ruthenium(II)-catalyzed synthesis of hydroxylated arenes with ester as an effective directing group.
    Yang Y; Lin Y; Rao Y
    Org Lett; 2012 Jun; 14(11):2874-7. PubMed ID: 22582921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic Reductive ortho-C-H Silylation of Phenols with Traceless, Versatile Acetal Directing Groups and Synthetic Applications of Dioxasilines.
    Hua Y; Asgari P; Avullala T; Jeon J
    J Am Chem Soc; 2016 Jun; 138(25):7982-91. PubMed ID: 27265033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of cysteine and methionine availability on protein peroxide scavenging activity and phenolic stability in emulsions.
    Zhou L; Elias RJ
    Food Chem; 2014 Mar; 146():521-30. PubMed ID: 24176377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Porphyrin-Fe(III)-hydroperoxide and porphyrin-Fe(III)-peroxide anion as catalytic intermediates in cytochrome P450-catalyzed hydroxylation reactions: a molecular orbital study.
    Zakhariev O; Trautwein AX; Veeger C
    Biophys Chem; 2000 Dec; 88(1-3):11-34. PubMed ID: 11152267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radical C-H Trifluoromethoxylation of (Hetero)arenes with Bis(trifluoromethyl)peroxide.
    Dix S; Golz P; Schmid JR; Riedel S; Hopkinson MN
    Chemistry; 2021 Aug; 27(45):11554-11558. PubMed ID: 34096651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. implications of chloride ions.
    Anipsitakis GP; Dionysiou DD; Gonzalez MA
    Environ Sci Technol; 2006 Feb; 40(3):1000-7. PubMed ID: 16509349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrolytic stability of terephthaloyl chloride and isophthaloyl chloride.
    Berti WR; Wolstenholme BW; Kozlowski JJ; Sobocinski RL; Freerksen RW
    Environ Sci Technol; 2006 Oct; 40(20):6330-5. PubMed ID: 17120561
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.
    Garcia-Bosch I; Ribas X; Costas M
    Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthetic Strategies for Peroxide Ring Construction in Artemisinin.
    Vil' VA; Yaremenko IA; Ilovaisky AI; Terent'ev AO
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28085073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In search of catalytic antioxidants--(alkyltelluro)phenols, (alkyltelluro)resorcinols, and bis(alkyltelluro)phenols.
    Poon JF; Singh VP; Engman L
    J Org Chem; 2013 Jun; 78(12):6008-15. PubMed ID: 23701313
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydroxylation of organic polymer surface: method and application.
    Yang P; Yang W
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3759-70. PubMed ID: 24564629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands.
    Morimoto Y; Bunno S; Fujieda N; Sugimoto H; Itoh S
    J Am Chem Soc; 2015 May; 137(18):5867-70. PubMed ID: 25938800
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron-catalyzed arene C-H hydroxylation.
    Cheng L; Wang H; Cai H; Zhang J; Gong X; Han W
    Science; 2021 Oct; 374(6563):77-81. PubMed ID: 34591631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of a specific oxidant for phenols.
    Barton D; Ley SV
    Ciba Found Symp; 1978; (53):53-66. PubMed ID: 246782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new H2O2/acid anhydride system for the iodoarene-catalyzed C-C bond-forming reactions of phenols.
    Dohi T; Minamitsuji Y; Maruyama A; Hirose S; Kita Y
    Org Lett; 2008 Aug; 10(16):3559-62. PubMed ID: 18616338
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Considerations on the mechanism of action of artemisinin antimalarials: part 1--the 'carbon radical' and 'heme' hypotheses.
    Haynes RK; Cheu KW; N'Da D; Coghi P; Monti D
    Infect Disord Drug Targets; 2013 Aug; 13(4):217-77. PubMed ID: 24304352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A facile BPO-mediated ortho-hydroxylation and benzoylation of N-alkyl anilines for synthesis of 2-benzamidophenols.
    Zhang ZJ; Quan XJ; Ren ZH; Wang YY; Guan ZH
    Org Lett; 2014 Jun; 16(12):3292-5. PubMed ID: 24897584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.