BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25321492)

  • 1. Vibrational beatings conceal evidence of electronic coherence in the FMO light-harvesting complex.
    Tempelaar R; Jansen TL; Knoester J
    J Phys Chem B; 2014 Nov; 118(45):12865-72. PubMed ID: 25321492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.
    Engel GS; Calhoun TR; Read EL; Ahn TK; Mancal T; Cheng YC; Blankenship RE; Fleming GR
    Nature; 2007 Apr; 446(7137):782-6. PubMed ID: 17429397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer.
    Ishizaki A; Calhoun TR; Schlau-Cohen GS; Fleming GR
    Phys Chem Chem Phys; 2010 Jul; 12(27):7319-37. PubMed ID: 20544102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Different Quantum Coherence on the Pump-Probe Polarization Anisotropy of Photosynthetic Light-Harvesting Complexes: A Computational Study.
    Bai S; Song K; Shi Q
    J Phys Chem Lett; 2015 May; 6(10):1954-60. PubMed ID: 26263276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra.
    Fujihashi Y; Fleming GR; Ishizaki A
    J Chem Phys; 2015 Jun; 142(21):212403. PubMed ID: 26049423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of environment induced correlated fluctuations in electronic coupling on coherent excitation energy transfer dynamics in model photosynthetic systems.
    Huo P; Coker DF
    J Chem Phys; 2012 Mar; 136(11):115102. PubMed ID: 22443796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional spectroscopy of electronic couplings in photosynthesis.
    Brixner T; Stenger J; Vaswani HM; Cho M; Blankenship RE; Fleming GR
    Nature; 2005 Mar; 434(7033):625-8. PubMed ID: 15800619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards quantification of vibronic coupling in photosynthetic antenna complexes.
    Singh VP; Westberg M; Wang C; Dahlberg PD; Gellen T; Gardiner AT; Cogdell RJ; Engel GS
    J Chem Phys; 2015 Jun; 142(21):212446. PubMed ID: 26049466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational methodologies and physical insights into electronic energy transfer in photosynthetic light-harvesting complexes.
    Pachón LA; Brumer P
    Phys Chem Chem Phys; 2012 Aug; 14(29):10094-108. PubMed ID: 22735237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant coherence in photosynthetic electronic energy transfer by site-dependent pigment-protein interactions.
    Sato Y; Reynolds MF
    J Phys Chem B; 2014 Feb; 118(5):1229-33. PubMed ID: 24401013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.
    Fidler AF; Harel E; Long PD; Engel GS
    J Phys Chem A; 2012 Jan; 116(1):282-9. PubMed ID: 22191993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspective: Detecting and measuring exciton delocalization in photosynthetic light harvesting.
    Scholes GD; Smyth C
    J Chem Phys; 2014 Mar; 140(11):110901. PubMed ID: 24655162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional electronic spectroscopy of molecular aggregates.
    Ginsberg NS; Cheng YC; Fleming GR
    Acc Chem Res; 2009 Sep; 42(9):1352-63. PubMed ID: 19691358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From coherent to vibronic light harvesting in photosynthesis.
    Jumper CC; Rafiq S; Wang S; Scholes GD
    Curr Opin Chem Biol; 2018 Dec; 47():39-46. PubMed ID: 30077962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis.
    Turner DB; Dinshaw R; Lee KK; Belsley MS; Wilk KE; Curmi PM; Scholes GD
    Phys Chem Chem Phys; 2012 Apr; 14(14):4857-74. PubMed ID: 22374579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of photoprotection and control of photosynthetic light-harvesting.
    Pascal AA; Liu Z; Broess K; van Oort B; van Amerongen H; Wang C; Horton P; Robert B; Chang W; Ruban A
    Nature; 2005 Jul; 436(7047):134-7. PubMed ID: 16001075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design principles of photosynthetic light-harvesting.
    Fleming GR; Schlau-Cohen GS; Amarnath K; Zaks J
    Faraday Discuss; 2012; 155():27-41; discussion 103-14. PubMed ID: 22470965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine.
    Zhang Z; Wang J
    J Phys Chem B; 2015 Apr; 119(13):4662-7. PubMed ID: 25776946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multipartite quantum entanglement evolution in photosynthetic complexes.
    Zhu J; Kais S; Aspuru-Guzik A; Rodriques S; Brock B; Love PJ
    J Chem Phys; 2012 Aug; 137(7):074112. PubMed ID: 22920108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of strong electron correlation on the efficiency of photosynthetic light harvesting.
    Mazziotti DA
    J Chem Phys; 2012 Aug; 137(7):074117. PubMed ID: 22920113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.