BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25321492)

  • 21. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations.
    Arpin PC; Turner DB; McClure SD; Jumper CC; Mirkovic T; Challa JR; Lee J; Teng CY; Green BR; Wilk KE; Curmi PM; Hoef-Emden K; McCamant DW; Scholes GD
    J Phys Chem B; 2015 Aug; 119(31):10025-34. PubMed ID: 26189800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering coherence among excited states in synthetic heterodimer systems.
    Hayes D; Griffin GB; Engel GS
    Science; 2013 Jun; 340(6139):1431-4. PubMed ID: 23599263
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical Study on the Effect of Environment on Excitation Energy Transfer in Photosynthetic Light-Harvesting Systems.
    Cui X; Yan Y; Wei J
    J Phys Chem B; 2020 Mar; 124(12):2354-2362. PubMed ID: 32130013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Explicit correlated exciton-vibrational dynamics of the FMO complex.
    Schulze J; Kühn O
    J Phys Chem B; 2015 May; 119(20):6211-6. PubMed ID: 25927682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measures and implications of electronic coherence in photosynthetic light-harvesting.
    Smyth C; Fassioli F; Scholes GD
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3728-49. PubMed ID: 22753823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the interpretation of quantum coherent beats observed in two-dimensional electronic spectra of photosynthetic light harvesting complexes.
    Ishizaki A; Fleming GR
    J Phys Chem B; 2011 May; 115(19):6227-33. PubMed ID: 21488648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electronic energy transfer in model photosynthetic systems: Markovian vs. non-Markovian dynamics.
    Singh N; Brumer P
    Faraday Discuss; 2011; 153():41-50; discussion 73-91. PubMed ID: 22452072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coherence and decoherence in biological systems: principles of noise-assisted transport and the origin of long-lived coherences.
    Chin AW; Huelga SF; Plenio MB
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3638-57. PubMed ID: 22753818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems.
    Huo P; Miller TF
    Phys Chem Chem Phys; 2015 Dec; 17(46):30914-24. PubMed ID: 26073739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microscopic quantum coherence in a photosynthetic-light-harvesting antenna.
    Dawlaty JM; Ishizaki A; De AK; Fleming GR
    Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3672-91. PubMed ID: 22753820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences.
    Halpin A; Johnson PJ; Tempelaar R; Murphy RS; Knoester J; Jansen TL; Miller RJ
    Nat Chem; 2014 Mar; 6(3):196-201. PubMed ID: 24557133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes.
    Mohseni M; Shabani A; Lloyd S; Rabitz H
    J Chem Phys; 2014 Jan; 140(3):035102. PubMed ID: 25669414
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence spectroscopy of single photosynthetic light-harvesting supramolecular systems.
    Saga Y; Tamiaki H
    Cell Biochem Biophys; 2004; 40(2):149-65. PubMed ID: 15054220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Robustness of electronic coherence in the Fenna-Matthews-Olson complex to vibronic and structural modifications.
    Hayes D; Wen J; Panitchayangkoon G; Blankenship RE; Engel GS
    Faraday Discuss; 2011; 150():459-69; discussion 505-32. PubMed ID: 22457961
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct evidence of quantum transport in photosynthetic light-harvesting complexes.
    Panitchayangkoon G; Voronine DV; Abramavicius D; Caram JR; Lewis NH; Mukamel S; Engel GS
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20908-12. PubMed ID: 22167798
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photosynthetic light harvesting: excitons and coherence.
    Fassioli F; Dinshaw R; Arpin PC; Scholes GD
    J R Soc Interface; 2014 Mar; 11(92):20130901. PubMed ID: 24352671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast exciton-exciton coherent transfer in molecular aggregates and its application to light-harvesting systems.
    Hyeon-Deuk K; Tanimura Y; Cho M
    J Chem Phys; 2007 Aug; 127(7):075101. PubMed ID: 17718632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.
    Pelzer KM; Griffin GB; Gray SK; Engel GS
    J Chem Phys; 2012 Apr; 136(16):164508. PubMed ID: 22559497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and Efficiency in Bacterial Photosynthetic Light Harvesting.
    Bourne Worster S; Stross C; Vaughan FMWC; Linden N; Manby FR
    J Phys Chem Lett; 2019 Dec; 10(23):7383-7390. PubMed ID: 31714789
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Significant enhancement in the power-conversion efficiency of chlorophyll co-sensitized solar cells by mimicking the principles of natural photosynthetic light-harvesting complexes.
    Wang XF; Koyama Y; Kitao O; Wada Y; Sasaki SI; Tamiaki H; Zhou H
    Biosens Bioelectron; 2010 Apr; 25(8):1970-6. PubMed ID: 20149628
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.