These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25321518)

  • 1. Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry.
    Li Y; Yang T; Pang Z; Du G; Song S; Han S
    Opt Express; 2014 Sep; 22(18):21403-10. PubMed ID: 25321518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refractive index sensor based on graphene-coated photonic surface-wave resonance.
    Yang Q; Qin L; Cao G; Zhang C; Li X
    Opt Lett; 2018 Feb; 43(4):639-642. PubMed ID: 29444041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bloch surface wave resonance in photonic crystal fibers: towards ultra-wide range refractive index sensors.
    Gonzalez-Valencia E; Herrera RA; Torres P
    Opt Express; 2019 Mar; 27(6):8236-8245. PubMed ID: 31052645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bloch surface wave structures for high sensitivity detection and compact waveguiding.
    Khan MU; Corbett B
    Sci Technol Adv Mater; 2016; 17(1):398-409. PubMed ID: 27877891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules.
    Rodriguez GA; Lonai JD; Mernaugh RL; Weiss SM
    Nanoscale Res Lett; 2014; 9(1):383. PubMed ID: 25136285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing performance optimization of the Bloch surface wave biosensor based on the Bloch impedance-matching method.
    Ma J; Kang XB; Wang ZG
    Opt Lett; 2018 Nov; 43(21):5375-5378. PubMed ID: 30383011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bloch surface wave-enhanced fluorescence biosensor.
    Toma K; Descrovi E; Toma M; Ballarini M; Mandracci P; Giorgis F; Mateescu A; Jonas U; Knoll W; Dostálek J
    Biosens Bioelectron; 2013 May; 43():108-14. PubMed ID: 23291217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bloch Surface Wave Resonance Based Sensors as an Alternative to Surface Plasmon Resonance Sensors.
    Gryga M; Ciprian D; Hlubina P
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bloch Surface Wave-Coupled Emission at Ultra-Violet Wavelengths.
    Badugu R; Mao J; Blair S; Zhang D; Descrovi E; Angelini A; Huo Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2016 Dec; 120(50):28727-28734. PubMed ID: 28725334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Hole-Array Grating-Coupling-Based Excitation of Bloch Surface Waves for Highly Sensitive Biosensing.
    Ge D; Shi J; Rezk A; Ma C; Zhang L; Yang P; Zhu S
    Nanoscale Res Lett; 2019 Oct; 14(1):319. PubMed ID: 31599355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fano resonance and polarization transformation induced by interpolarization coupling of Bloch surface waves.
    Chen J; Wang P; Ming H; Lakowicz JR; Zhang D
    Phys Rev B; 2019 Mar; 99(11):. PubMed ID: 33842743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Sensitive THz Gas-Sensor Based on the Guided Bloch Surface Wave Resonance in Polymeric Photonic Crystals.
    Zhang C; Shen S; Wang Q; Lin M; Ouyang Z; Liu Q
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32182728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bloch waves at the surface of a single-layer coating D-shaped photonic crystal fiber.
    Gonzalez-Valencia E; Del Villar I; Torres P
    Opt Lett; 2020 May; 45(9):2547-2550. PubMed ID: 32356813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Different experimental results for the influence of immersion angle on the resonant frequency of a quartz crystal microbalance in a liquid phase: with a comment.
    Shen D; Kang Q; Li X; Cai H; Wang Y
    Anal Chim Acta; 2007 Jun; 593(2):188-95. PubMed ID: 17543606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Q lasing via all-dielectric Bloch-surface-wave platform.
    Lee YC; Ho YL; Lin BW; Chen MH; Xing D; Daiguji H; Delaunay JJ
    Nat Commun; 2023 Oct; 14(1):6458. PubMed ID: 37833267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensing concept based on Bloch surface waves and wavelength interrogation.
    Gryga M; Ciprian D; Hlubina P
    Opt Lett; 2020 Mar; 45(5):1096-1099. PubMed ID: 32108779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Guided Bloch surface waves on ultrathin polymeric ridges.
    Descrovi E; Sfez T; Quaglio M; Brunazzo D; Dominici L; Michelotti F; Herzig HP; Martin OJ; Giorgis F
    Nano Lett; 2010 Jun; 10(6):2087-91. PubMed ID: 20446750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral Characterization of Mid-Infrared Bloch Surface Waves Excited on a Truncated 1D Photonic Crystal.
    Occhicone A; Pea M; Polito R; Giliberti V; Sinibaldi A; Mattioli F; Cibella S; Notargiacomo A; Nucara A; Biagioni P; Michelotti F; Ortolani M; Baldassarre L
    ACS Photonics; 2021 Jan; 8(1):350-359. PubMed ID: 33585665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Dispersions of Bloch Surface Waves and Surface Plasmon Polaritons: Towards Advanced Biosensors.
    Balevicius Z; Baskys A
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced magnetic response in a gold nanowire pair array through coupling with Bloch surface waves.
    Liu H; Sun X; Pei Y; Yao F; Jiang Y
    Opt Lett; 2011 Jul; 36(13):2414-6. PubMed ID: 21725429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.