These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 25321531)
1. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators. Wang T; Zhang Y; Hong Z; Han Z Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531 [TBL] [Abstract][Full Text] [Related]
2. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices. Han Z; Bozhevolnyi SI Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147 [TBL] [Abstract][Full Text] [Related]
3. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system. He LY; Wang TJ; Gao YP; Cao C; Wang C Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475 [TBL] [Abstract][Full Text] [Related]
4. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Lu H; Liu X; Wang G; Mao D Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958 [TBL] [Abstract][Full Text] [Related]
5. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators. Zhuang H; Kong F; Li K; Sheng S Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785 [TBL] [Abstract][Full Text] [Related]
6. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency. Keleshtery MH; Kaatuzian H; Mir A; Zandi A Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882 [TBL] [Abstract][Full Text] [Related]
7. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators. Cui Y; Zeng C Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694 [TBL] [Abstract][Full Text] [Related]
9. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators. Cao G; Li H; Zhan S; Xu H; Liu Z; He Z; Wang Y Opt Express; 2013 Apr; 21(8):9198-205. PubMed ID: 23609630 [TBL] [Abstract][Full Text] [Related]
10. Induced transparency in nanoscale plasmonic resonator systems. Lu H; Liu X; Mao D; Gong Y; Wang G Opt Lett; 2011 Aug; 36(16):3233-5. PubMed ID: 21847218 [TBL] [Abstract][Full Text] [Related]
11. Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator. Huang Q; Shu Z; Song G; Chen J; Xia J; Yu J Opt Express; 2014 Feb; 22(3):3219-27. PubMed ID: 24663613 [TBL] [Abstract][Full Text] [Related]
12. Manipulating the plasmon-induced transparency in terahertz metamaterials. Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144 [TBL] [Abstract][Full Text] [Related]
13. Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide. Cao G; Li H; Zhan S; He Z; Guo Z; Xu X; Yang H Opt Lett; 2014 Jan; 39(2):216-9. PubMed ID: 24562110 [TBL] [Abstract][Full Text] [Related]
14. Electromagnetically induced transparency and absorption in a compact silicon ring-bus-ring-bus system. Wang Z; Lu Q; Wang Y; Xia J; Huang Q Opt Express; 2017 Jun; 25(13):14368-14377. PubMed ID: 28789023 [TBL] [Abstract][Full Text] [Related]
15. High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes. Xie J; Zhu X; Zang X; Cheng Q; Ye Y; Zhu Y Sci Rep; 2017 Sep; 7(1):11291. PubMed ID: 28900248 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene. Shi X; Han D; Dai Y; Yu Z; Sun Y; Chen H; Liu X; Zi J Opt Express; 2013 Nov; 21(23):28438-43. PubMed ID: 24514355 [TBL] [Abstract][Full Text] [Related]
17. Plasmon-Induced Transparency in an Asymmetric Bowtie Structure. Wei W; Yan X; Shen B; Zhang X Nanoscale Res Lett; 2019 Jul; 14(1):246. PubMed ID: 31338743 [TBL] [Abstract][Full Text] [Related]
18. Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling. Zhang C; Bai R; Gu X; Jin XR; Zhang YQ; Lee Y Opt Express; 2017 Oct; 25(20):24281-24289. PubMed ID: 29041373 [TBL] [Abstract][Full Text] [Related]
19. Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system. Zhang Z; Ng GI; Hu T; Qiu H; Guo X; Rouifed MS; Liu C; Wang H Opt Express; 2016 Oct; 24(22):25665-25675. PubMed ID: 27828502 [TBL] [Abstract][Full Text] [Related]
20. Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide. Wang L; Li W; Jiang X Opt Lett; 2015 May; 40(10):2325-8. PubMed ID: 26393730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]