BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25321531)

  • 1. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.
    Wang T; Zhang Y; Hong Z; Han Z
    Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices.
    Han Z; Bozhevolnyi SI
    Opt Express; 2011 Feb; 19(4):3251-7. PubMed ID: 21369147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system.
    He LY; Wang TJ; Gao YP; Cao C; Wang C
    Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency.
    Lu H; Liu X; Wang G; Mao D
    Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene-based electromagnetically induced transparency with coupling Fabry-Perot resonators.
    Zhuang H; Kong F; Li K; Sheng S
    Appl Opt; 2015 Aug; 54(24):7455-61. PubMed ID: 26368785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method proposing a slow light ring resonator structure coupled with a metal-dielectric-metal waveguide system based on plasmonic induced transparency.
    Keleshtery MH; Kaatuzian H; Mir A; Zandi A
    Appl Opt; 2017 May; 56(15):4496-4504. PubMed ID: 29047882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon-induced transparency in metal-insulator-metal waveguide side-coupled with multiple cavities.
    Guo J
    Appl Opt; 2014 Mar; 53(8):1604-9. PubMed ID: 24663417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators.
    Cao G; Li H; Zhan S; Xu H; Liu Z; He Z; Wang Y
    Opt Express; 2013 Apr; 21(8):9198-205. PubMed ID: 23609630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induced transparency in nanoscale plasmonic resonator systems.
    Lu H; Liu X; Mao D; Gong Y; Wang G
    Opt Lett; 2011 Aug; 36(16):3233-5. PubMed ID: 21847218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator.
    Huang Q; Shu Z; Song G; Chen J; Xia J; Yu J
    Opt Express; 2014 Feb; 22(3):3219-27. PubMed ID: 24663613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating the plasmon-induced transparency in terahertz metamaterials.
    Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide.
    Cao G; Li H; Zhan S; He Z; Guo Z; Xu X; Yang H
    Opt Lett; 2014 Jan; 39(2):216-9. PubMed ID: 24562110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromagnetically induced transparency and absorption in a compact silicon ring-bus-ring-bus system.
    Wang Z; Lu Q; Wang Y; Xia J; Huang Q
    Opt Express; 2017 Jun; 25(13):14368-14377. PubMed ID: 28789023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High extinction ratio electromagnetically induced transparency analogue based on the radiation suppression of dark modes.
    Xie J; Zhu X; Zang X; Cheng Q; Ye Y; Zhu Y
    Sci Rep; 2017 Sep; 7(1):11291. PubMed ID: 28900248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene.
    Shi X; Han D; Dai Y; Yu Z; Sun Y; Chen H; Liu X; Zi J
    Opt Express; 2013 Nov; 21(23):28438-43. PubMed ID: 24514355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon-Induced Transparency in an Asymmetric Bowtie Structure.
    Wei W; Yan X; Shen B; Zhang X
    Nanoscale Res Lett; 2019 Jul; 14(1):246. PubMed ID: 31338743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling.
    Zhang C; Bai R; Gu X; Jin XR; Zhang YQ; Lee Y
    Opt Express; 2017 Oct; 25(20):24281-24289. PubMed ID: 29041373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system.
    Zhang Z; Ng GI; Hu T; Qiu H; Guo X; Rouifed MS; Liu C; Wang H
    Opt Express; 2016 Oct; 24(22):25665-25675. PubMed ID: 27828502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable control of electromagnetically induced transparency analogue in a compact graphene-based waveguide.
    Wang L; Li W; Jiang X
    Opt Lett; 2015 May; 40(10):2325-8. PubMed ID: 26393730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.