These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25321580)

  • 1. A plasmonic antenna-coupled superconducting near-IR photon detector.
    Carter FW; Santavicca DF; Prober DE
    Opt Express; 2014 Sep; 22(18):22062-71. PubMed ID: 25321580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superconducting nanowire single-photon detectors integrated with optical nano-antennae.
    Hu X; Dauler EA; Molnar RJ; Berggren KK
    Opt Express; 2011 Jan; 19(1):17-31. PubMed ID: 21263538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling.
    Fukuda D; Fujii G; Numata T; Amemiya K; Yoshizawa A; Tsuchida H; Fujino H; Ishii H; Itatani T; Inoue S; Zama T
    Opt Express; 2011 Jan; 19(2):870-5. PubMed ID: 21263626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 Aug; 19(16):15532-7. PubMed ID: 21934916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry.
    Niwa K; Numata T; Hattori K; Fukuda D
    Sci Rep; 2017 Apr; 7():45660. PubMed ID: 28374801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting regime.
    Gerrits T; Calkins B; Tomlin N; Lita AE; Migdall A; Mirin R; Nam SW
    Opt Express; 2012 Oct; 20(21):23798-810. PubMed ID: 23188345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network assisted design of plasmonic nanostructures on superconducting transition-edge-sensors for single photon detectors.
    Rodrigo SG; Pobes C; Sánchez Casi M; Martín-Moreno L; Camón Lasheras A
    Opt Express; 2022 Apr; 30(8):12368-12377. PubMed ID: 35472873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beaming circularly polarized photons from quantum dots coupled with plasmonic spiral antenna.
    Rui G; Chen W; Abeysinghe DC; Nelson RL; Zhan Q
    Opt Express; 2012 Aug; 20(17):19297-304. PubMed ID: 23038571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Niobium nitride plasmonic perfect absorbers for tunable infrared superconducting nanowire photodetection.
    Karl P; Mennle S; Ubl M; Flad P; Yang JW; Peng TY; Lu YJ; Giessen H
    Opt Express; 2021 May; 29(11):17087-17096. PubMed ID: 34154259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Few-Photon Spectral Confocal Microscopy for Cell Imaging Using Superconducting Transition Edge Sensor.
    Niwa K; Hattori K; Fukuda D
    Front Bioeng Biotechnol; 2021; 9():789709. PubMed ID: 34976979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide.
    Muskens OL; Bergamini L; Wang Y; Gaskell JM; Zabala N; de Groot CH; Sheel DW; Aizpurua J
    Light Sci Appl; 2016 Oct; 5(10):e16173. PubMed ID: 30167127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point.
    Blanchard R; Boriskina SV; Genevet P; Kats MA; Tetienne JP; Yu N; Scully MO; Dal Negro L; Capasso F
    Opt Express; 2011 Oct; 19(22):22113-24. PubMed ID: 22109055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas.
    Park HR; Bahk YM; Ahn KJ; Park QH; Kim DS; Martín-Moreno L; García-Vidal FJ; Bravo-Abad J
    ACS Nano; 2011 Oct; 5(10):8340-5. PubMed ID: 21961910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths.
    You L; Wu J; Xu Y; Hou X; Fang W; Li H; Zhang W; Zhang L; Liu X; Tong L; Wang Z; Xie X
    Opt Express; 2017 Dec; 25(25):31221-31229. PubMed ID: 29245799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna.
    Sederberg S; Elezzabi AY
    Opt Express; 2011 May; 19(11):10456-61. PubMed ID: 21643300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation transfer function of antenna-coupled infrared detector arrays.
    Boreman GD; Dogariu A; Christodoulou C; Kotter D
    Appl Opt; 1996 Nov; 35(31):6110-4. PubMed ID: 21127627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Opt Express; 2011 Aug; 19(18):17075-85. PubMed ID: 21935068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Nanotechnology; 2012 Jul; 23(27):275201. PubMed ID: 22706495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed and high-efficiency superconducting nanowire single photon detector array.
    Rosenberg D; Kerman AJ; Molnar RJ; Dauler EA
    Opt Express; 2013 Jan; 21(2):1440-7. PubMed ID: 23389125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna.
    Rui G; Nelson RL; Zhan Q
    Opt Lett; 2011 Dec; 36(23):4533-5. PubMed ID: 22139233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.