These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25321586)

  • 1. Arrays of open, independently tunable microcavities.
    Derntl C; Schneider M; Schalko J; Bittner A; Schmiedmayer J; Schmid U; Trupke M
    Opt Express; 2014 Sep; 22(18):22111-20. PubMed ID: 25321586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scalable quantum computer with ions in an array of microtraps.
    Cirac JI; Zoller P
    Nature; 2000 Apr; 404(6778):579-81. PubMed ID: 10766235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtoliter tunable optical cavity arrays.
    Dolan PR; Hughes GM; Grazioso F; Patton BR; Smith JM
    Opt Lett; 2010 Nov; 35(21):3556-8. PubMed ID: 21042348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.
    Bitarafan MH; DeCorby RG
    Sensors (Basel); 2017 Jul; 17(8):. PubMed ID: 28758967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.
    Wei HR; Deng FG
    Opt Express; 2014 Jan; 22(1):593-607. PubMed ID: 24515020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Entangled states of more than 40 atoms in an optical fiber cavity.
    Haas F; Volz J; Gehr R; Reichel J; Estève J
    Science; 2014 Apr; 344(6180):180-3. PubMed ID: 24674870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brillouin Optomechanics in Coupled Silicon Microcavities.
    Espinel YA; Santos FG; Luiz GO; Alegre TP; Wiederhecker GS
    Sci Rep; 2017 Mar; 7():43423. PubMed ID: 28262814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-optical control of ultrahigh-Q silica microcavities with iron oxide nanoparticles.
    Zhu S; Shi L; Yuan S; Xu X; Zhang X
    Opt Lett; 2017 Dec; 42(24):5133-5136. PubMed ID: 29240155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled exchange interaction between pairs of neutral atoms in an optical lattice.
    Anderlini M; Lee PJ; Brown BL; Sebby-Strabley J; Phillips WD; Porto JV
    Nature; 2007 Jul; 448(7152):452-6. PubMed ID: 17653187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic control of Purcell enhanced emission of erbium ions in nanoparticles.
    Casabone B; Deshmukh C; Liu S; Serrano D; Ferrier A; Hümmer T; Goldner P; Hunger D; de Riedmatten H
    Nat Commun; 2021 Jun; 12(1):3570. PubMed ID: 34117226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic three-dimensional atomic structures assembled atom by atom.
    Barredo D; Lienhard V; de Léséleuc S; Lahaye T; Browaeys A
    Nature; 2018 Sep; 561(7721):79-82. PubMed ID: 30185955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement induced entanglement and quantum computation with atoms in optical cavities.
    Sørensen AS; Mølmer K
    Phys Rev Lett; 2003 Aug; 91(9):097905. PubMed ID: 14525213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical microcavities.
    Vahala KJ
    Nature; 2003 Aug; 424(6950):839-46. PubMed ID: 12917698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon microcavity arrays with open access and a finesse of half a million.
    Wachter G; Kuhn S; Minniberger S; Salter C; Asenbaum P; Millen J; Schneider M; Schalko J; Schmid U; Felgner A; Hüser D; Arndt M; Trupke M
    Light Sci Appl; 2019; 8():37. PubMed ID: 30992987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bespoke mirror fabrication for quantum simulation with light in open-access microcavities.
    Walker BT; Ash BJ; Trichet AAP; Smith JM; Nyman RA
    Opt Express; 2021 Mar; 29(7):10800-10810. PubMed ID: 33820206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.