These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 25322030)
1. Single frequency Ti:sapphire laser with continuous frequency-tuning and low intensity noise by means of the additional intracavity nonlinear loss. Lu H; Sun X; Wang M; Su J; Peng K Opt Express; 2014 Oct; 22(20):24551-8. PubMed ID: 25322030 [TBL] [Abstract][Full Text] [Related]
2. Single-frequency CW Ti:sapphire laser with intensity noise manipulation and continuous frequency-tuning. Jin P; Lu H; Wei Y; Su J; Peng K Opt Lett; 2017 Jan; 42(1):143-146. PubMed ID: 28059199 [TBL] [Abstract][Full Text] [Related]
3. Realization of CW single-frequency tunable Ti:sapphire laser with immunity to the noise of the pump source. Song J; Qin J; Jin P; Chen Y; Su J; Lu H Opt Express; 2023 Jan; 31(1):745-754. PubMed ID: 36607007 [TBL] [Abstract][Full Text] [Related]
4. Continuously tunable single-frequency 455 nm blue laser for high-state excitation transition of cesium. Li F; Zhao B; Wei J; Jin P; Lu H; Peng K Opt Lett; 2019 Aug; 44(15):3785-3788. PubMed ID: 31368968 [TBL] [Abstract][Full Text] [Related]
5. Intensity noise manipulation of a single-frequency laser with high output power by intracavity nonlinear loss. Lu H; Guo Y; Peng K Opt Lett; 2015 Nov; 40(22):5196-9. PubMed ID: 26565833 [TBL] [Abstract][Full Text] [Related]
9. Intracavity LiNbO(3) Fabry-Perot etalon for frequency stabilization and tuning of a single-mode quasi-continuous-wave titanium:sapphire ring laser. Cabaret L; Camus P; Leroux R; Philip J Opt Lett; 2001 Jul; 26(13):983-5. PubMed ID: 18040508 [TBL] [Abstract][Full Text] [Related]
10. Realization of compact Watt-level single-frequency continuous-wave self-tuning titanium: sapphire laser. Wei J; Cao X; Jin P; Shi Z; Su J; Lu H Opt Express; 2021 Jan; 29(2):2679-2689. PubMed ID: 33726459 [TBL] [Abstract][Full Text] [Related]
12. Generation of continuous-wave single-frequency 1.5 W 378 nm radiation by frequency doubling of a Ti:sapphire laser. Cha YH; Ko KH; Lim G; Han JM; Park HM; Kim TS; Jeong DY Appl Opt; 2010 Mar; 49(9):1666-70. PubMed ID: 20300165 [TBL] [Abstract][Full Text] [Related]
13. Scheme for improving laser stability via feedback control of intracavity nonlinear loss. Jin P; Lu H; Su J; Peng K Appl Opt; 2016 May; 55(13):3478-82. PubMed ID: 27140359 [TBL] [Abstract][Full Text] [Related]
14. External power-enhancement cavity versus intracavity frequency doubling of Ti:sapphire lasers using BIBO. Cruz LS; Cruz FC Opt Express; 2007 Sep; 15(19):11913-21. PubMed ID: 19547554 [TBL] [Abstract][Full Text] [Related]
15. Quantum noise limited tunable single-frequency Nd:YLF/LBO laser at 526.5 nm. Guo X; Wang X; Li Y; Zhang K Appl Opt; 2009 Nov; 48(33):6475-8. PubMed ID: 19935968 [TBL] [Abstract][Full Text] [Related]
16. Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb. Heinecke DC; Bartels A; Diddams SA Opt Express; 2011 Sep; 19(19):18440-51. PubMed ID: 21935212 [TBL] [Abstract][Full Text] [Related]
17. Observation of strong cascaded Kerr-lens dynamics in an optimally-coupled cw intracavity frequency-doubled Nd:YLF ring laser. Zondy JJ; Camargo FA; Zanon T; Petrov V; Wetter NU Opt Express; 2010 Mar; 18(5):4796-815. PubMed ID: 20389493 [TBL] [Abstract][Full Text] [Related]
18. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium. Eismann U; Bergschneider A; Sievers F; Kretzschmar N; Salomon C; Chevy F Opt Express; 2013 Apr; 21(7):9091-102. PubMed ID: 23571998 [TBL] [Abstract][Full Text] [Related]
19. Detailed performance modeling of a pulsed high-power single-frequency Ti:sapphire laser. Wagner G; Wulfmeyer V; Behrendt A Appl Opt; 2011 Nov; 50(31):5921-37. PubMed ID: 22086016 [TBL] [Abstract][Full Text] [Related]