These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25322061)

  • 1. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers.
    Yang F; Jin W; Cao Y; Ho HL; Wang Y
    Opt Express; 2014 Oct; 22(20):24894-907. PubMed ID: 25322061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser.
    Wang X; Zhu T; Chen L; Bao X
    Opt Express; 2011 May; 19(10):9617-25. PubMed ID: 21643220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Line Fit Model for the Detection of Methane at ν(2) + 2ν(3) Band using Hollow-Core Photonic Bandgap Fibres.
    Cubillas AM; Lazaro JM; Conde OM; Petrovich MN; Lopez-Higuera JM
    Sensors (Basel); 2009; 9(1):490-502. PubMed ID: 22389612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase sensitivity of fundamental mode of hollow-core photonic bandgap fiber to internal gas pressure.
    Cao Y; Jin W; Yang F; Ho HL
    Opt Express; 2014 Jun; 22(11):13190-201. PubMed ID: 24921514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance optimization of hollow-core fiber photothermal gas sensors.
    Lin Y; Jin W; Yang F; Tan Y; Ho HL
    Opt Lett; 2017 Nov; 42(22):4712-4715. PubMed ID: 29140350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers.
    Yang F; Jin W; Ho HL; Wang F; Liu W; Ma L; Hu Y
    Opt Express; 2013 Jul; 21(13):15514-21. PubMed ID: 23842338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-resonant wavelength modulation saturation spectroscopy in acetylene-filled hollow-core photonic bandgap fibres applied to modulation-free laser diode stabilisation.
    Pineda-Vadillo P; Lynch M; Charlton C; Donegan JF; Weldon V
    Opt Express; 2009 Dec; 17(25):23309-15. PubMed ID: 20052257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm.
    Cubillas AM; Silva-Lopez M; Lazaro JM; Conde OM; Petrovich MN; Lopez-Higuera JM
    Opt Express; 2007 Dec; 15(26):17570-6. PubMed ID: 19551051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference.
    Geng Y; Li X; Tan X; Deng Y; Yu Y
    Appl Opt; 2011 Feb; 50(4):468-72. PubMed ID: 21283237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. All-fiber gas sensor with intracavity photothermal spectroscopy.
    Zhao Y; Jin W; Lin Y; Yang F; Ho HL
    Opt Lett; 2018 Apr; 43(7):1566-1569. PubMed ID: 29601031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer.
    Mao C; Huang B; Wang Y; Huang Y; Zhang L; Shao Y; Wang Y
    Opt Express; 2018 Nov; 26(23):30108-30115. PubMed ID: 30469890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed gas sensing with optical fibre photothermal interferometry.
    Lin Y; Liu F; He X; Jin W; Zhang M; Yang F; Ho HL; Tan Y; Gu L
    Opt Express; 2017 Dec; 25(25):31568-31585. PubMed ID: 29245830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive gas refractive index sensor based on hollow-core photonic bandgap fiber.
    Zhang Z; He J; Du B; Guo K; Wang Y
    Opt Express; 2019 Oct; 27(21):29649-29658. PubMed ID: 31684222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Dual Greenhouse Gas Sensor Based on Hollow-Core Photonic Crystal Fiber for Gas-Cell In-Situ Applications.
    Wang J; Li B; Wu W; Lin G
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission properties of hollow-core photonic bandgap fibers in relation to molecular spectroscopy.
    Falk CI; Hald J; Petersen JC; Lyngsø JK
    Appl Opt; 2010 Jul; 49(20):3854-9. PubMed ID: 20648156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow-Core Photonic Crystal Fiber Gas Sensing.
    Yu R; Chen Y; Shui L; Xiao L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wideband, large mode field and single vector mode transmission in a 37-cell hollow-core photonic bandgap fiber.
    You Y; Guo H; Hao Y; Wang Z; Liu YG
    Opt Express; 2021 Jul; 29(15):24226-24236. PubMed ID: 34614672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hollow-core fiber Fabry-Perot photothermal gas sensor.
    Yang F; Tan Y; Jin W; Lin Y; Qi Y; Ho HL
    Opt Lett; 2016 Jul; 41(13):3025-8. PubMed ID: 27367092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas Sensor Based on Photonic Crystal Fibres in the 2ν(3) and ν(2) + 2ν(3) Vibrational Bands of Methane.
    Cubillas AM; Lazaro JM; Conde OM; Petrovich MN; Lopez-Higuera JM
    Sensors (Basel); 2009; 9(8):6261-72. PubMed ID: 22454584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nondestructive determination of the core size of a hollow-core photonic bandgap fiber using Fabry-Perot interference.
    Xu X; Wang X; Zhu T; Gao F; Song N
    Opt Lett; 2018 Jul; 43(13):3045-3048. PubMed ID: 29957777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.