BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25322109)

  • 1. Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling.
    Jia J; Liu J; Jin G; Wang Y
    Appl Opt; 2014 Sep; 53(27):6287-93. PubMed ID: 25322109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-generated hologram with occlusion effect using layer-based processing.
    Zhang H; Cao L; Jin G
    Appl Opt; 2017 May; 56(13):F138-F143. PubMed ID: 28463308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of the real-virtual 3D scene-fused full-parallax holographic stereogram.
    Yan X; Wang C; Liu Y; Wang X; Liu X; Jing T; Chen S; Li P; Jiang X
    Opt Express; 2021 Aug; 29(16):25979-26003. PubMed ID: 34614913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues.
    Zhang H; Zhao Y; Cao L; Jin G
    Opt Express; 2015 Feb; 23(4):3901-13. PubMed ID: 25836429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occlusion culling for computer generated hologram based on ray-wavefront conversion.
    Wakunami K; Yamashita H; Yamaguchi M
    Opt Express; 2013 Sep; 21(19):21811-22. PubMed ID: 24104073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occlusion handling using angular spectrum convolution in fully analytical mesh based computer generated hologram.
    Askari M; Kim SB; Shin KS; Ko SB; Kim SH; Park DY; Ju YG; Park JH
    Opt Express; 2017 Oct; 25(21):25867-25878. PubMed ID: 29041249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time, large-depth holographic 3D head-up display: selected aspects.
    Teich M; Schuster T; Leister N; Zozgornik S; Fugal J; Wagner T; Zschau E; Häussler R; Stolle H
    Appl Opt; 2022 Feb; 61(5):B156-B163. PubMed ID: 35201136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Depth-Enhanced Holographic Super Multi-View Display Based on Depth Segmentation.
    Wang Z; Su Y; Pang Y; Feng Q; Lv G
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element.
    Yeom J; Jeong J; Jang C; Li G; Hong K; Lee B
    Appl Opt; 2015 Oct; 54(30):8856-62. PubMed ID: 26560370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve.
    Park J; Lee K; Park Y
    Nat Commun; 2019 Mar; 10(1):1304. PubMed ID: 30898998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatic-dispersion-corrected full-color holographic display using directional-view image scaling method.
    Piao YL; Erdenebat MU; Kwon KC; Gil SK; Kim N
    Appl Opt; 2019 Feb; 58(5):A120-A127. PubMed ID: 30873968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast polygon-based method for calculating computer-generated holograms in three-dimensional display.
    Pan Y; Wang Y; Liu J; Li X; Jia J
    Appl Opt; 2013 Jan; 52(1):A290-9. PubMed ID: 23292405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-generated holograms by multiple wavefront recording plane method with occlusion culling.
    Symeonidou A; Blinder D; Munteanu A; Schelkens P
    Opt Express; 2015 Aug; 23(17):22149-61. PubMed ID: 26368189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing layered 3D displays with a lens.
    Muenzel S; Fleischer JW
    Appl Opt; 2013 Apr; 52(10):D97-101. PubMed ID: 23545988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast method of calculating a photorealistic hologram based on orthographic ray-wavefront conversion.
    Igarashi S; Nakamura T; Yamaguchi M
    Opt Lett; 2016 Apr; 41(7):1396-9. PubMed ID: 27192245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color three-dimensional display with omnidirectional view based on a light-emitting diode projector.
    Yan C; Liu X; Li H; Xia X; Lu H; Zheng W
    Appl Opt; 2009 Aug; 48(22):4490-5. PubMed ID: 19649055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid-crystal-display-based touchable light field three-dimensional display using display-capture mapping calibration.
    Peng Y; Li H; Zhong Q; Liu X
    Appl Opt; 2012 Sep; 51(25):6014-9. PubMed ID: 22945147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speckle-suppression in hologram calculation using ray-sampling plane.
    Utsugi T; Yamaguchi M
    Opt Express; 2014 Jul; 22(14):17193-206. PubMed ID: 25090533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing.
    Sang X; Gao X; Yu X; Xing S; Li Y; Wu Y
    Opt Express; 2018 Apr; 26(7):8883-8889. PubMed ID: 29715849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed full analytical holographic computations for true-life scenes.
    Liu YZ; Dong JW; Pu YY; Chen BC; He HX; Wang HZ
    Opt Express; 2010 Feb; 18(4):3345-51. PubMed ID: 20389342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.