These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 25322189)

  • 1. Mode-based analysis of silicon nanohole arrays for photovoltaic applications.
    Donnelly JL; Sturmberg BC; Dossou KB; Botten LC; Asatryan AA; Poulton CG; McPhedran RC; Martijn de Sterke C
    Opt Express; 2014 Aug; 22 Suppl 5():A1343-54. PubMed ID: 25322189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications.
    Du QG; Kam CH; Demir HV; Yu HY; Sun XW
    Opt Lett; 2011 May; 36(9):1713-5. PubMed ID: 21540978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient broadband light absorption in elliptical nanohole arrays for photovoltaic application.
    Xia Z; Qin X; Wu Y; Pan Y; Zhou J; Zhang Z
    Opt Lett; 2015 Dec; 40(24):5814-7. PubMed ID: 26670519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.
    Lin C; Povinelli ML
    Opt Express; 2009 Oct; 17(22):19371-81. PubMed ID: 19997158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband light absorption enhancement in randomly rotated elliptical nanohole arrays for photovoltaic application.
    Qin X; Wu Y; Zhang Z; Xia Z; Zhou J; Zhu J
    Appl Opt; 2019 Feb; 58(4):1152-1157. PubMed ID: 30874166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications.
    Bao H; Ruan X
    Opt Lett; 2010 Oct; 35(20):3378-80. PubMed ID: 20967072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modal analysis of enhanced absorption in silicon nanowire arrays.
    Sturmberg BC; Dossou KB; Botten LC; Asatryan AA; Poulton CG; de Sterke CM; McPhedran RC
    Opt Express; 2011 Sep; 19 Suppl 5():A1067-81. PubMed ID: 21935249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical properties of nanohole arrays in metal-dielectric double films prepared by mask-on-metal colloidal lithography.
    Junesch J; Sannomiya T; Dahlin AB
    ACS Nano; 2012 Nov; 6(11):10405-15. PubMed ID: 23098107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.
    Tanaka Y; Kawamoto Y; Fujita M; Noda S
    Opt Express; 2013 Aug; 21(17):20111-8. PubMed ID: 24105557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanohole arrays in chemical analysis: manufacturing methods and applications.
    Masson JF; Murray-Méthot MP; Live LS
    Analyst; 2010 Jul; 135(7):1483-9. PubMed ID: 20358096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance silicon nanohole solar cells.
    Peng KQ; Wang X; Li L; Wu XL; Lee ST
    J Am Chem Soc; 2010 May; 132(20):6872-3. PubMed ID: 20426468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband absorption enhancement in elliptical silicon nanowire arrays for photovoltaic applications.
    Wu Y; Xia Z; Liang Z; Zhou J; Jiao H; Cao H; Qin X
    Opt Express; 2014 Aug; 22 Suppl 5():A1292-302. PubMed ID: 25322184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel 3D Au nanohole arrays with outstanding optical properties.
    Ai B; Yu Y; Möhwald H; Zhang G
    Nanotechnology; 2013 Jan; 24(3):035303. PubMed ID: 23263405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraordinary transmission through gain-assisted silicon-based nanohole arrays in telecommunication regimes.
    Bavil MA; Deng Q; Zhou Z
    Opt Lett; 2014 Aug; 39(15):4506-9. PubMed ID: 25078214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical absorption enhancement in nanopore textured-silicon thin film for photovoltaic application.
    Wang F; Yu H; Li J; Sun X; Wang X; Zheng H
    Opt Lett; 2010 Jan; 35(1):40-2. PubMed ID: 20664666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-chip surface-based detection with nanohole arrays.
    De Leebeeck A; Kumar LK; de Lange V; Sinton D; Gordon R; Brolo AG
    Anal Chem; 2007 Jun; 79(11):4094-100. PubMed ID: 17447728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced optical absorption in nanohole-textured silicon thin-film solar cells with rear-located metal particles.
    Chen Y; Han W; Yang F
    Opt Lett; 2013 Oct; 38(19):3973-5. PubMed ID: 24081102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometry dependence of surface plasmon polariton lifetimes in nanohole arrays.
    Lei DY; Li J; Fernández-Domínguez AI; Ong HC; Maier SA
    ACS Nano; 2010 Jan; 4(1):432-8. PubMed ID: 20028101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colorizing silicon surface with regular nanohole arrays induced by femtosecond laser pulses.
    Zhang CY; Yao JW; Liu HY; Dai QF; Wu LJ; Lan S; Trofimov VA; Lysak TM
    Opt Lett; 2012 Mar; 37(6):1106-8. PubMed ID: 22446240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.