These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
868 related articles for article (PubMed ID: 25322202)
1. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study. Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202 [TBL] [Abstract][Full Text] [Related]
2. A finite element model of the human knee joint for the study of tibio-femoral contact. Donahue TL; Hull ML; Rashid MM; Jacobs CR J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261 [TBL] [Abstract][Full Text] [Related]
3. Implementation of a gait cycle loading into healthy and meniscectomised knee joint models with fibril-reinforced articular cartilage. Mononen ME; Jurvelin JS; Korhonen RK Comput Methods Biomech Biomed Engin; 2015; 18(2):141-52. PubMed ID: 23570549 [TBL] [Abstract][Full Text] [Related]
4. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint. Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762 [TBL] [Abstract][Full Text] [Related]
5. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading. Venäläinen MS; Mononen ME; Väänänen SP; Jurvelin JS; Töyräs J; Virén T; Korhonen RK J Biomech; 2016 May; 49(7):1111-1120. PubMed ID: 26965471 [TBL] [Abstract][Full Text] [Related]
6. A finite element study of stress distributions in normal and osteoarthritic knee joints. Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670 [TBL] [Abstract][Full Text] [Related]
7. EMG-Assisted Muscle Force Driven Finite Element Model of the Knee Joint with Fibril-Reinforced Poroelastic Cartilages and Menisci. Esrafilian A; Stenroth L; Mononen ME; Tanska P; Avela J; Korhonen RK Sci Rep; 2020 Feb; 10(1):3026. PubMed ID: 32080233 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity of simulated knee joint mechanics to selected human and bovine fibril-reinforced poroelastic material properties. Jahangir S; Esrafilian A; Ebrahimi M; Stenroth L; Alkjær T; Henriksen M; Englund M; Mononen ME; Korhonen RK; Tanska P J Biomech; 2023 Nov; 160():111800. PubMed ID: 37797566 [TBL] [Abstract][Full Text] [Related]
9. Comparison of different material models of articular cartilage in 3D computational modeling of the knee: Data from the Osteoarthritis Initiative (OAI). Klets O; Mononen ME; Tanska P; Nieminen MT; Korhonen RK; Saarakkala S J Biomech; 2016 Dec; 49(16):3891-3900. PubMed ID: 27825602 [TBL] [Abstract][Full Text] [Related]
10. Creep behavior of the intact and meniscectomy knee joints. Kazemi M; Li LP; Savard P; Buschmann MD J Mech Behav Biomed Mater; 2011 Oct; 4(7):1351-8. PubMed ID: 21783145 [TBL] [Abstract][Full Text] [Related]
11. Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee. Dabiri Y; Li LP Med Eng Phys; 2013 Nov; 35(11):1591-8. PubMed ID: 23764429 [TBL] [Abstract][Full Text] [Related]
12. A multi-scale finite element model for investigation of chondrocyte mechanics in normal and medial meniscectomy human knee joint during walking. Tanska P; Mononen ME; Korhonen RK J Biomech; 2015 Jun; 48(8):1397-406. PubMed ID: 25795269 [TBL] [Abstract][Full Text] [Related]
13. Large correction in opening wedge high tibial osteotomy with resultant joint-line obliquity induces excessive shear stress on the articular cartilage. Nakayama H; Schröter S; Yamamoto C; Iseki T; Kanto R; Kurosaka K; Kambara S; Yoshiya S; Higa M Knee Surg Sports Traumatol Arthrosc; 2018 Jun; 26(6):1873-1878. PubMed ID: 28831525 [TBL] [Abstract][Full Text] [Related]
14. Importance of Patella, Quadriceps Forces, and Depthwise Cartilage Structure on Knee Joint Motion and Cartilage Response During Gait. Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Klodowski A; Kulmala JP; Korhonen RK J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27138135 [TBL] [Abstract][Full Text] [Related]
15. Three dimensional patient-specific collagen architecture modulates cartilage responses in the knee joint during gait. Räsänen LP; Mononen ME; Lammentausta E; Nieminen MT; Jurvelin JS; Korhonen RK Comput Methods Biomech Biomed Engin; 2016; 19(11):1225-40. PubMed ID: 26714834 [TBL] [Abstract][Full Text] [Related]
16. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Peña E; Calvo B; Martínez MA; Palanca D; Doblaré M Clin Biomech (Bristol); 2005 Jun; 20(5):498-507. PubMed ID: 15836937 [TBL] [Abstract][Full Text] [Related]
17. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis. Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088 [TBL] [Abstract][Full Text] [Related]
18. Subject-specific finite element analysis of the human medial collateral ligament during valgus knee loading. Gardiner JC; Weiss JA J Orthop Res; 2003 Nov; 21(6):1098-106. PubMed ID: 14554224 [TBL] [Abstract][Full Text] [Related]
19. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models. Mattei L; Campioni E; Accardi MA; Dini D Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160 [TBL] [Abstract][Full Text] [Related]
20. Finite element analysis of the valgus knee joint of an obese child. Sun J; Yan S; Jiang Y; Wong DW; Zhang M; Zeng J; Zhang K Biomed Eng Online; 2016 Dec; 15(Suppl 2):158. PubMed ID: 28155677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]