These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25322212)
1. Proton beam characterization by proton-induced acoustic emission: simulation studies. Jones KC; Witztum A; Sehgal CM; Avery S Phys Med Biol; 2014 Nov; 59(21):6549-63. PubMed ID: 25322212 [TBL] [Abstract][Full Text] [Related]
2. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy. Assmann W; Kellnberger S; Reinhardt S; Lehrack S; Edlich A; Thirolf PG; Moser M; Dollinger G; Omar M; Ntziachristos V; Parodi K Med Phys; 2015 Feb; 42(2):567-74. PubMed ID: 25652477 [TBL] [Abstract][Full Text] [Related]
3. Acoustic time-of-flight for proton range verification in water. Jones KC; Vander Stappen F; Sehgal CM; Avery S Med Phys; 2016 Sep; 43(9):5213. PubMed ID: 27587053 [TBL] [Abstract][Full Text] [Related]
4. How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies. Jones KC; Seghal CM; Avery S Phys Med Biol; 2016 Mar; 61(6):2213-42. PubMed ID: 26913839 [TBL] [Abstract][Full Text] [Related]
5. Acoustic-based proton range verification in heterogeneous tissue: simulation studies. Jones KC; Nie W; Chu JCH; Turian JV; Kassaee A; Sehgal CM; Avery S Phys Med Biol; 2018 Jan; 63(2):025018. PubMed ID: 29176057 [TBL] [Abstract][Full Text] [Related]
6. Feasibility of RACT for 3D dose measurement and range verification in a water phantom. Alsanea F; Moskvin V; Stantz KM Med Phys; 2015 Feb; 42(2):937-46. PubMed ID: 25652506 [TBL] [Abstract][Full Text] [Related]
7. Experimental depth dose curves of a 67.5 MeV proton beam for benchmarking and validation of Monte Carlo simulation. Faddegon BA; Shin J; Castenada CM; Ramos-Méndez J; Daftari IK Med Phys; 2015 Jul; 42(7):4199-210. PubMed ID: 26133619 [TBL] [Abstract][Full Text] [Related]
8. Theoretical detection threshold of the proton-acoustic range verification technique. Ahmad M; Xiang L; Yousefi S; Xing L Med Phys; 2015 Oct; 42(10):5735-44. PubMed ID: 26429247 [TBL] [Abstract][Full Text] [Related]
9. Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator-specific time structure - A simulation study. Patch SK; Hoff DEM; Webb TB; Sobotka LG; Zhao T Med Phys; 2018 Feb; 45(2):783-793. PubMed ID: 29159885 [TBL] [Abstract][Full Text] [Related]
10. A novel range-verification method using ionoacoustic wave generated from spherical gold markers for particle-beam therapy: a simulation study. Takayanagi T; Uesaka T; Kitaoka M; Unlu MB; Umegaki K; Shirato H; Xing L; Matsuura T Sci Rep; 2019 Mar; 9(1):4011. PubMed ID: 30850625 [TBL] [Abstract][Full Text] [Related]
11. Single pulse protoacoustic range verification using a clinical synchrocyclotron. Caron J; Gonzalez G; Pandey PK; Wang S; Prather K; Ahmad S; Xiang L; Chen Y Phys Med Biol; 2023 Feb; 68(4):. PubMed ID: 36634371 [No Abstract] [Full Text] [Related]
12. Range verification of a clinical proton beam in an abdominal phantom by co-registration of ionoacoustics and ultrasound. Schauer J; Wieser HP; Lascaud J; Huang Y; Vidal M; Herault J; Ntziachristos V; Dollinger G; Parodi K Phys Med Biol; 2023 Jun; 68(12):. PubMed ID: 37220766 [No Abstract] [Full Text] [Related]
13. On the robustness of multilateration of ionoacoustic signals for localization of the Bragg peak at pre-clinical proton beam energies in water. Kalunga R; Wieser HP; Dash P; Würl M; Riboldi M; Schreiber J; Assmann W; Parodi K; Lascaud J Phys Med Biol; 2023 May; 68(10):. PubMed ID: 37011627 [No Abstract] [Full Text] [Related]
14. Technical Note: Experimental verification of magnetic field-induced beam deflection and Bragg peak displacement for MR-integrated proton therapy. Schellhammer SM; Gantz S; Lühr A; Oborn BM; Bussmann M; Hoffmann AL Med Phys; 2018 Jul; 45(7):3429-3434. PubMed ID: 29763970 [TBL] [Abstract][Full Text] [Related]
15. An analysis of beam parameters on proton-acoustic waves through an analytic approach. Kipergil EA; Erkol H; Kaya S; Gulsen G; Unlu MB Phys Med Biol; 2017 Jun; 62(12):4694-4710. PubMed ID: 28252450 [TBL] [Abstract][Full Text] [Related]
16. Ionoacoustic application of an optical hydrophone to detect proton beam range in water. Sueyasu S; Takayanagi T; Miyazaki K; Kuriyama Y; Ishi Y; Uesugi T; Unlu MB; Kudo N; Chen Y; Kasamatsu K; Fujii M; Kobayashi M; Rohringer W; Matsuura T Med Phys; 2023 Apr; 50(4):2438-2449. PubMed ID: 36565440 [TBL] [Abstract][Full Text] [Related]
17. Energy Spectra of Protons and Generated Secondary Electrons around the Bragg Peak in Materials of Interest in Proton Therapy. de Vera P; Abril I; Garcia-Molina R Radiat Res; 2018 Sep; 190(3):282-297. PubMed ID: 29995591 [TBL] [Abstract][Full Text] [Related]
18. Feasibility study of 3D time-reversal reconstruction of proton-induced acoustic signals for dose verification in the head and the liver: A simulation study. Yu Y; Qi P; Peng H Med Phys; 2021 Aug; 48(8):4485-4497. PubMed ID: 34120348 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method. Titt U; Zheng Y; Vassiliev ON; Newhauser WD Phys Med Biol; 2008 Jan; 53(2):487-504. PubMed ID: 18185001 [TBL] [Abstract][Full Text] [Related]
20. Analytical computation of prompt gamma ray emission and detection for proton range verification. Sterpin E; Janssens G; Smeets J; Vander Stappen F; Prieels D; Priegnitz M; Perali I; Vynckier S Phys Med Biol; 2015 Jun; 60(12):4915-46. PubMed ID: 26057053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]