These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 25322417)

  • 41. Design of an off-axis see-through display based on a dynamic phase correction approach.
    Beuret M; Twardowski P; Fontaine J
    Opt Express; 2011 Sep; 19(20):19688-701. PubMed ID: 21996911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 162-inch 3D light field display based on aspheric lens array and holographic functional screen.
    Yang S; Sang X; Yu X; Gao X; Liu L; Liu B; Yang L
    Opt Express; 2018 Dec; 26(25):33013-33021. PubMed ID: 30645459
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Holographic display method with a large field of view based on a holographic functional screen.
    Liu SJ; Wang D; Zhai FX; Liu NN; Hao QY
    Appl Opt; 2020 Jul; 59(20):5983-5988. PubMed ID: 32672751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhanced see-through near-eye display using time-division multiplexing of a Maxwellian-view and holographic display.
    Lee JS; Kim YK; Lee MY; Won YH
    Opt Express; 2019 Jan; 27(2):689-701. PubMed ID: 30696151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wide-angle camera with multichannel architecture using microlenses on a curved surface.
    Liang WL; Shen HK; Su GD
    Appl Opt; 2014 Jun; 53(17):3696-705. PubMed ID: 24921135
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Off-axis virtual-image display and camera by holographic mirror and blur compensation.
    Nakamura T; Kimura S; Takahashi K; Aburakawa Y; Takahashi S; Igarashi S; Torashima S; Yamaguchi M
    Opt Express; 2018 Sep; 26(19):24864-24880. PubMed ID: 30469597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational optical distortion correction using a radial basis function-based mapping method.
    Bauer A; Vo S; Parkins K; Rodriguez F; Cakmakci O; Rolland JP
    Opt Express; 2012 Jul; 20(14):14906-20. PubMed ID: 22772185
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optical design using image distortion for orthorectification.
    Johnson TP; Sasian J; Cook LG
    Appl Opt; 2020 Aug; 59(22):G175-G184. PubMed ID: 32749331
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.
    Wan W; Qiao W; Huang W; Zhu M; Fang Z; Pu D; Ye Y; Liu Y; Chen L
    Opt Express; 2016 Mar; 24(6):6203-12. PubMed ID: 27136814
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer.
    Piao ML; Kim N
    Appl Opt; 2014 Apr; 53(10):2180-6. PubMed ID: 24787179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Extended viewing angle holographic display system with tilted SLMs in a circular configuration.
    Kozacki T; Kujawińska M; Finke G; Hennelly B; Pandey N
    Appl Opt; 2012 Apr; 51(11):1771-80. PubMed ID: 22505169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of a large field-of-view see-through near to eye display with two geometrical waveguides.
    Yang J; Twardowski P; Gérard P; Fontaine J
    Opt Lett; 2016 Dec; 41(23):5426-5429. PubMed ID: 27906204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical design of a distributed zoom concentric multiscale meteorological instrument.
    Shen Y; Wang H; Wang C; Yue P; Xue Y; Bai Z; Fan X
    Appl Opt; 2018 Jun; 57(18):5168-5179. PubMed ID: 30117981
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly efficient waveguide display with space-variant volume holographic gratings.
    Yu C; Peng Y; Zhao Q; Li H; Liu X
    Appl Opt; 2017 Dec; 56(34):9390-9397. PubMed ID: 29216051
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Design, tolerance, and fabrication of an optical see-through head-mounted display with free-form surface elements.
    Wang Q; Cheng D; Wang Y; Hua H; Jin G
    Appl Opt; 2013 Mar; 52(7):C88-99. PubMed ID: 23458822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. LensIet VR: Thin, Flat and Wide-FOV Virtual Reality Display Using Fresnel Lens and LensIet Array.
    Bang K; Jo Y; Chae M; Lee B
    IEEE Trans Vis Comput Graph; 2021 May; 27(5):2545-2554. PubMed ID: 33755568
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Natural perspective projections for head-mounted displays.
    Steinicke F; Bruder G; Kuhl S; Willemsen P; Lappe M; Hinrichs KH
    IEEE Trans Vis Comput Graph; 2011 Jul; 17(7):888-99. PubMed ID: 21546652
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Systematic design method for holographic zone plates with aberration corrections.
    Ono Y; Nishida N
    Appl Opt; 1987 Mar; 26(6):1137-41. PubMed ID: 20454282
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-uniformity correction of wide field of view imaging system.
    Ji Y; Zeng C; Tan F; Feng A; Han J
    Opt Express; 2022 Jun; 30(12):22123-22134. PubMed ID: 36224918
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Videoendoscopic distortion correction and its application to virtual guidance of endoscopy.
    Helferty JP; Zhang C; McLennan G; Higgins WE
    IEEE Trans Med Imaging; 2001 Jul; 20(7):605-17. PubMed ID: 11465467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.