These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 25322471)

  • 1. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation.
    Hajisalem G; Nezami MS; Gordon R
    Nano Lett; 2014 Nov; 14(11):6651-4. PubMed ID: 25322471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending Plasmonic Enhancement Limit with Blocked Electron Tunneling by Monolayer Hexagonal Boron Nitride.
    Chen S; Li P; Zhang C; Wu W; Zhou G; Zhang C; Weng S; Ding T; Wu DY; Yang L
    Nano Lett; 2023 Jun; 23(12):5445-5452. PubMed ID: 36995130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Switchable Metal-Insulator Phase Transition Metamaterials.
    Hajisalem G; Nezami MS; Gordon R
    Nano Lett; 2017 May; 17(5):2940-2944. PubMed ID: 28379016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic metal nanostructures with extremely small features: new effects, fabrication and applications.
    Shi H; Zhu X; Zhang S; Wen G; Zheng M; Duan H
    Nanoscale Adv; 2021 Jul; 3(15):4349-4369. PubMed ID: 36133477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Third Harmonic Mechanism in Complex Plasmonic Fano Structures.
    Metzger B; Schumacher T; Hentschel M; Lippitz M; Giessen H
    ACS Photonics; 2014 Jun; 1(6):471-476. PubMed ID: 25540812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Near-Field of Second-Harmonic Light around Plasmonic Nanoantennas.
    Metzger B; Hentschel M; Giessen H
    Nano Lett; 2017 Mar; 17(3):1931-1937. PubMed ID: 28182426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.
    Kim JY; Kang BJ; Park J; Bahk YM; Kim WT; Rhie J; Jeon H; Rotermund F; Kim DS
    Nano Lett; 2015 Oct; 15(10):6683-8. PubMed ID: 26372787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core-Shell Junction to Subnanometer.
    Lin L; Zapata M; Xiong M; Liu Z; Wang S; Xu H; Borisov AG; Gu H; Nordlander P; Aizpurua J; Ye J
    Nano Lett; 2015 Oct; 15(10):6419-28. PubMed ID: 26375710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extremely large third-order nonlinear optical effects caused by electron transport in quantum plasmonic metasurfaces with subnanometer gaps.
    Takeuchi T; Yabana K
    Sci Rep; 2020 Dec; 10(1):21270. PubMed ID: 33277512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering.
    Zhu W; Crozier KB
    Nat Commun; 2014 Oct; 5():5228. PubMed ID: 25311008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers.
    Song B; Yao Y; Groenewald RE; Wang Y; Liu H; Wang Y; Li Y; Liu F; Cronin SB; Schwartzberg AM; Cabrini S; Haas S; Wu W
    ACS Nano; 2017 Jun; 11(6):5836-5843. PubMed ID: 28599108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inch-Scale Ball-in-Bowl Plasmonic Nanostructure Arrays for Polarization-Independent Second-Harmonic Generation.
    Wu XX; Jiang WY; Wang XF; Zhao LY; Shi J; Zhang S; Sui X; Chen ZX; Du WN; Shi JW; Liu Q; Zhang Q; Zhang Y; Liu XF
    ACS Nano; 2021 Jan; 15(1):1291-1300. PubMed ID: 33373181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations.
    Esteban R; Zugarramurdi A; Zhang P; Nordlander P; García-Vidal FJ; Borisov AG; Aizpurua J
    Faraday Discuss; 2015; 178():151-83. PubMed ID: 25739465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna.
    Aouani H; Rahmani M; Navarro-Cía M; Maier SA
    Nat Nanotechnol; 2014 Apr; 9(4):290-4. PubMed ID: 24608232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Switching plasmonic nanogaps between classical and quantum regimes with supramolecular interactions.
    Zhang C; Li D; Zhang G; Wang X; Mao L; Gan Q; Ding T; Xu H
    Sci Adv; 2022 Feb; 8(5):eabj9752. PubMed ID: 35119919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle Size-Dependent Onset of the Tunneling Regime in Ideal Dimers of Gold Nanospheres.
    Jose J; Schumacher L; Jalali M; Haberfehlner G; Svejda JT; Erni D; Schlücker S
    ACS Nano; 2022 Dec; 16(12):21377-21387. PubMed ID: 36475629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas.
    Hentschel M; Utikal T; Giessen H; Lippitz M
    Nano Lett; 2012 Jul; 12(7):3778-82. PubMed ID: 22686215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum Tunneling Induced Optical Rectification and Plasmon-Enhanced Photocurrent in Nanocavity Molecular Junctions.
    Kos D; Assumpcao DR; Guo C; Baumberg JJ
    ACS Nano; 2021 Sep; 15(9):14535-14543. PubMed ID: 34436876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.