BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25322797)

  • 1. Long-term potentiation can be induced in the CA1 region of hippocampus in the absence of αCaMKII T286-autophosphorylation.
    Villers A; Giese KP; Ris L
    Learn Mem; 2014 Nov; 21(11):616-26. PubMed ID: 25322797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of contextual memory formed in the absence of αCaMKII autophosphorylation.
    Irvine EE; Danhiez A; Radwanska K; Nassim C; Lucchesi W; Godaux E; Ris L; Giese KP
    Mol Brain; 2011 Jan; 4():8. PubMed ID: 21276220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning.
    Giese KP; Fedorov NB; Filipkowski RK; Silva AJ
    Science; 1998 Feb; 279(5352):870-3. PubMed ID: 9452388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMDA receptor-dependent long-term potentiation in mouse hippocampal interneurons shows a unique dependence on Ca(2+)/calmodulin-dependent kinases.
    Lamsa K; Irvine EE; Giese KP; Kullmann DM
    J Physiol; 2007 Nov; 584(Pt 3):885-94. PubMed ID: 17884930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophosphorylation of alphaCaMKII is not a general requirement for NMDA receptor-dependent LTP in the adult mouse.
    Cooke SF; Wu J; Plattner F; Errington M; Rowan M; Peters M; Hirano A; Bradshaw KD; Anwyl R; Bliss TV; Giese KP
    J Physiol; 2006 Aug; 574(Pt 3):805-18. PubMed ID: 16728448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent changes in autophosphorylation of alpha calcium/calmodulin dependent kinase II in hippocampus and amygdala after contextual fear conditioning.
    Fang T; Kasbi K; Rothe S; Aziz W; Giese KP
    Brain Res Bull; 2017 Sep; 134():18-23. PubMed ID: 28648815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Group II Metabotropic Glutamate Receptors Promotes LTP Induction at Schaffer Collateral-CA1 Pyramidal Cell Synapses by Priming NMDA Receptors.
    Rosenberg N; Gerber U; Ster J
    J Neurosci; 2016 Nov; 36(45):11521-11531. PubMed ID: 27911756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophosphorylation of alphaCaMKII downregulates excitability of CA1 pyramidal neurons following synaptic stimulation.
    Sametsky EA; Disterhoft JF; Ohno M
    Neurobiol Learn Mem; 2009 Jul; 92(1):120-3. PubMed ID: 19245842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enriching the environment of alphaCaMKIIT286A mutant mice reveals that LTD occurs in memory processing but must be subsequently reversed by LTP.
    Parsley SL; Pilgram SM; Soto F; Giese KP; Edwards FA
    Learn Mem; 2007; 14(1-2):75-83. PubMed ID: 17202430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation.
    Makhinson M; Chotiner JK; Watson JB; O'Dell TJ
    J Neurosci; 1999 Apr; 19(7):2500-10. PubMed ID: 10087064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. alpha-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors in hippocampus.
    Park CS; Elgersma Y; Grant SG; Morrison JH
    Neuroscience; 2008 Jan; 151(1):43-55. PubMed ID: 18082335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrasynaptic NMDA receptor dependent long-term potentiation of hippocampal CA1 pyramidal neurons.
    Yang Q; Zhu G; Liu D; Ju JG; Liao ZH; Xiao YX; Zhang Y; Chao N; Wang J; Li W; Luo JH; Li ST
    Sci Rep; 2017 Jun; 7(1):3045. PubMed ID: 28596523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CaMKII Autophosphorylation Is Necessary for Optimal Integration of Ca
    Chang JY; Parra-Bueno P; Laviv T; Szatmari EM; Lee SR; Yasuda R
    Neuron; 2017 May; 94(4):800-808.e4. PubMed ID: 28521133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CaM kinase II in long-term potentiation.
    Fukunaga K; Muller D; Miyamoto E
    Neurochem Int; 1996 Apr; 28(4):343-58. PubMed ID: 8740440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A pharmacogenetic inducible approach to the study of NMDA/alphaCaMKII signaling in synaptic plasticity.
    Ohno M; Frankland PW; Silva AJ
    Curr Biol; 2002 Apr; 12(8):654-6. PubMed ID: 11967152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infantile Amnesia Is Related to Developmental Immaturity of the Maintenance Mechanisms for Long-Term Potentiation.
    Tsai TC; Huang CC; Hsu KS
    Mol Neurobiol; 2019 Feb; 56(2):907-919. PubMed ID: 29804230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity.
    Coultrap SJ; Barcomb K; Bayer KU
    PLoS One; 2012; 7(5):e37176. PubMed ID: 22615928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
    Andrade-Talavera Y; Duque-Feria P; Paulsen O; Rodríguez-Moreno A
    Cereb Cortex; 2016 Aug; 26(8):3637-3654. PubMed ID: 27282393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.