BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

794 related articles for article (PubMed ID: 25323146)

  • 1. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.
    de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE
    Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan.
    Inglezakis VJ; Rojas-Solórzano L; Kim J; Aitbekova A; Ismailova A
    Waste Manag Res; 2015 May; 33(5):486-94. PubMed ID: 25819927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK.
    Jeswani HK; Azapagic A
    Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.
    Colazo AB; Sánchez A; Font X; Colón J
    Waste Manag; 2015 Sep; 43():84-97. PubMed ID: 26123979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of two different alternatives of energy recovery from municipal solid waste in Brazil.
    Medina Jimenez AC; Nordi GH; Palacios Bereche MC; Bereche RP; Gallego AG; Nebra SA
    Waste Manag Res; 2017 Nov; 35(11):1137-1148. PubMed ID: 28893135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity production from municipal solid waste in Brazil.
    Nordi GH; Palacios-Bereche R; Gallego AG; Nebra SA
    Waste Manag Res; 2017 Jul; 35(7):709-720. PubMed ID: 28553775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three municipal solid waste gasification technologies analysis for electrical energy generation in Brazil.
    Medina Jimenez AC; Bereche RP; Nebra S
    Waste Manag Res; 2019 Jun; 37(6):631-642. PubMed ID: 30983548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.
    Sharma BK; Chandel MK
    Waste Manag Res; 2017 Jan; 35(1):79-91. PubMed ID: 27872406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.
    Yu Y; Zhang W
    Waste Manag Res; 2016 Apr; 34(4):368-77. PubMed ID: 26873911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of a landfill gas to energy system at the municipal solid waste landfill in Gaziantep, Turkey.
    Tercan SH; Cabalar AF; Yaman G
    J Air Waste Manag Assoc; 2015 Aug; 65(8):912-8. PubMed ID: 26211632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of municipal solid waste treatment technologies from a life cycle perspective in China.
    Dong J; Chi Y; Zou D; Fu C; Huang Q; Ni M
    Waste Manag Res; 2014 Jan; 32(1):13-23. PubMed ID: 24163375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The environmental comparison of landfilling vs. incineration of MSW accounting for waste diversion.
    Assamoi B; Lawryshyn Y
    Waste Manag; 2012 May; 32(5):1019-30. PubMed ID: 22099926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of waste-to-energy alternatives for a low-capacity power plant in Brazil.
    Ferreira ETF; Balestieri JAP
    Waste Manag Res; 2018 Mar; 36(3):247-258. PubMed ID: 29375021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.
    Toshiki K; Giang PQ; Serrona KR; Sekikawa T; Yu JS; Choijil B; Kunikane S
    J Environ Sci (China); 2015 Feb; 28():178-86. PubMed ID: 25662253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of physical pre-treatment of source-sorted organic fraction of municipal solid waste on greenhouse-gas emissions and the economy in a Swedish anaerobic digestion system.
    Carlsson M; Holmström D; Bohn I; Bisaillon M; Morgan-Sagastume F; Lagerkvist A
    Waste Manag; 2015 Apr; 38():117-25. PubMed ID: 25661691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effectiveness of municipal solid waste incinerators in replacing other fuels. A primary energy balance approach for the EU28.
    Di Maria F; Sisani F
    Waste Manag Res; 2018 Oct; 36(10):942-951. PubMed ID: 30044198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.
    Burnley S; Coleman T; Peirce A
    Waste Manag; 2015 May; 39():295-304. PubMed ID: 25758908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun City.
    Cheng H; Zhang Y; Meng A; Li Q
    Environ Sci Technol; 2007 Nov; 41(21):7509-15. PubMed ID: 18044534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation.
    Nair A; Sartaj M; Kennedy K; Coelho NM
    Waste Manag Res; 2014 Oct; 32(10):939-46. PubMed ID: 25125510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.