BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 25323204)

  • 1. Novel rolling circle amplification and DNA origami-based DNA belt-involved signal amplification assay for highly sensitive detection of prostate-specific antigen (PSA).
    Yan J; Hu C; Wang P; Liu R; Zuo X; Liu X; Song S; Fan C; He D; Sun G
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20372-7. PubMed ID: 25323204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rolling-circle amplification under topological constraints.
    Kuhn H; Demidov VV; Frank-Kamenetskii MD
    Nucleic Acids Res; 2002 Jan; 30(2):574-80. PubMed ID: 11788721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The single strand template shortening strategy improves the sensitivity and specificity of solid-state nanopore detection.
    Yu J; Yu C; Li Y; Yu C; Wang Y; Wu R; Li B
    Chem Commun (Camb); 2024 Apr; 60(35):4723-4726. PubMed ID: 38597243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor-associated antigen-specific cell imaging based on upconversion luminescence and nucleic acid rolling circle amplification.
    Zhan Y; Mao Y; Sun P; Liu C; Gou H; Qi H; Chen G; Hu S; Tian B
    Mikrochim Acta; 2024 Apr; 191(5):248. PubMed ID: 38587676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the chemical functionality of DNA nanomaterials generated by rolling circle amplification.
    Baker YR; Yuan L; Chen J; Belle R; Carlisle R; El-Sagheer AH; Brown T
    Nucleic Acids Res; 2021 Sep; 49(16):9042-9052. PubMed ID: 34403467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A replicable tetrahedral nanostructure self-assembled from a single DNA strand.
    Li Z; Wei B; Nangreave J; Lin C; Liu Y; Mi Y; Yan H
    J Am Chem Soc; 2009 Sep; 131(36):13093-8. PubMed ID: 19737020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling circle enzymatic replication of a complex multi-crossover DNA nanostructure.
    Lin C; Wang X; Liu Y; Seeman NC; Yan H
    J Am Chem Soc; 2007 Nov; 129(46):14475-81. PubMed ID: 17963390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA Origami Seesaws as Comparative Binding Assay.
    Nickels PC; Høiberg HC; Simmel SS; Holzmeister P; Tinnefeld P; Liedl T
    Chembiochem; 2016 Jun; 17(12):1093-6. PubMed ID: 27038073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of DNA nanotechnology for DNA methyltransferases in biosensing assays.
    Huang Y; Zhao Z; Yi G; Zhang M
    J Mater Chem B; 2024 May; 12(17):4063-4079. PubMed ID: 38572575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative dynamics of DNA-grafted magnetic nanoparticles optimize magnetic biosensing and coupling to DNA origami.
    Lak A; Wang Y; Kolbeck PJ; Pauer C; Chowdhury MS; Cassani M; Ludwig F; Viereck T; Selbach F; Tinnefeld P; Schilling M; Liedl T; Tavacoli J; Lipfert J
    Nanoscale; 2024 Apr; 16(15):7678-7689. PubMed ID: 38533617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating single-stranded DNA circles with minimal resources.
    Ford A; Miller L; Trant J; Nawarathne IN
    MethodsX; 2021; 8():101300. PubMed ID: 34434820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coating with flexible DNA network enhanced T-cell activation and tumor killing for adoptive cell therapy.
    Zhang Z; Liu Q; Tan J; Zhan X; Liu T; Wang Y; Lu G; Wu M; Zhang Y
    Acta Pharm Sin B; 2021 Jul; 11(7):1965-1977. PubMed ID: 34386331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of rotavirus using padlock probes and rolling circle amplification.
    Mezger A; Öhrmalm C; Herthnek D; Blomberg J; Nilsson M
    PLoS One; 2014; 9(11):e111874. PubMed ID: 25369034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
    Pearce TR; Kokkoli E
    Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery.
    Yan J; Hu C; Wang P; Zhao B; Ouyang X; Zhou J; Liu R; He D; Fan C; Song S
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2431-5. PubMed ID: 25599663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical DNA origami pH sensors.
    Kuzuya A; Watanabe R; Yamanaka Y; Tamaki T; Kaino M; Ohya Y
    Sensors (Basel); 2014 Oct; 14(10):19329-35. PubMed ID: 25325338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalizing DNA origami to investigate and interact with biological systems.
    Knappe GA; Wamhoff EC; Bathe M
    Nat Rev Mater; 2023 Feb; 8(2):123-138. PubMed ID: 37206669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rolling Circle Amplification Tailored for Plasmonic Biosensors: From Ensemble to Single-Molecule Detection.
    Schmidt K; Hageneder S; Lechner B; Zbiral B; Fossati S; Ahmadi Y; Minunni M; Toca-Herrera JL; Reimhult E; Barisic I; Dostalek J
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55017-55027. PubMed ID: 36446038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress of Magnetically Actuated DNA Micro/Nanorobots.
    Liu F; Liu X; Huang Q; Arai T
    Cyborg Bionic Syst; 2022; 2022():9758460. PubMed ID: 36285315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies.
    Bush J; Singh S; Vargas M; Oktay E; Hu CH; Veneziano R
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32722650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.