These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 25323210)

  • 1. [Detection and evaluation of cartilage defects in the canine stifle joint - an ex vivo study using high-field magnetic resonance imaging].
    Flatz KM; Glaser C; Flatz WH; Reiser MF; Matis U
    Tierarztl Prax Ausg K Kleintiere Heimtiere; 2014; 42(5):291-6. PubMed ID: 25323210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. THE USE OF SMALL FIELD-OF-VIEW 3 TESLA MAGNETIC RESONANCE IMAGING FOR IDENTIFICATION OF ARTICULAR CARTILAGE DEFECTS IN THE CANINE STIFLE: AN EX VIVO CADAVERIC STUDY.
    Ruoff CM; Eichelberger BM; Pool RR; Griffin JF; Cummings KJ; Pozzi A; Padua A; Saunders WB
    Vet Radiol Ultrasound; 2016 Nov; 57(6):601-610. PubMed ID: 27629105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of the articular cartilage of the canine ulnar trochlear notch using high-field magnetic resonance imaging.
    Probst A; Modler F; Künzel W; Mlynarik V; Trattnig S
    Vet J; 2008 Jul; 177(1):63-70. PubMed ID: 17513147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GROSS AND HISTOPATHOLOGIC CORRELATION OF LOW-FIELD MAGNETIC RESONANCE IMAGING FINDINGS IN THE STIFLE OF ASYMPTOMATIC HORSES.
    Santos MP; Gutierrez-Nibeyro SD; McKnight AL; Singh K
    Vet Radiol Ultrasound; 2015; 56(4):407-16. PubMed ID: 25545132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteophytosis, subchondral bone sclerosis, joint effusion and soft tissue thickening in canine experimental stifle osteoarthritis: comparison between 1.5 T magnetic resonance imaging and computed radiography.
    D'Anjou MA; Moreau M; Troncy E; Martel-Pelletier J; Abram F; Raynauld JP; Pelletier JP
    Vet Surg; 2008 Feb; 37(2):166-77. PubMed ID: 18251811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation between grade 3 and grade 4 articular cartilage defects of the knee: fat-suppressed proton density-weighted versus fat-suppressed three-dimensional gradient-echo MRI.
    Lee SY; Jee WH; Kim SK; Koh IJ; Kim JM
    Acta Radiol; 2010 May; 51(4):455-61. PubMed ID: 20350249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the articular cartilage of the knee joint with vastly undersampled isotropic projection reconstruction steady-state free precession imaging.
    Kijowski R; Lu A; Block W; Grist T
    J Magn Reson Imaging; 2006 Jul; 24(1):168-75. PubMed ID: 16758476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy.
    Disler DG; McCauley TR; Wirth CR; Fuchs MD
    AJR Am J Roentgenol; 1995 Aug; 165(2):377-82. PubMed ID: 7618561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anatomic study of the canine stifle using low-field magnetic resonance imaging (MRI) and MRI arthrography.
    Pujol E; Van Bree H; Cauzinille L; Poncet C; Gielen I; Bouvy B
    Vet Surg; 2011 Jun; 40(4):395-401. PubMed ID: 21418258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of High-field and Low-field Magnetic Resonance Imaging of Stifle Joint Disorders in Dogs.
    Przeworski A; Adamiak Z; Głodek J
    Pol J Vet Sci; 2016 Sep; 19(3):663-670. PubMed ID: 27760030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison between pig lumbar zypapophyseal joint cartilage acquired from multiple magnetic resonance image sequences and gross specimens].
    Liao H; Yu W; Wang W; Liao Y
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2010 Oct; 35(10):1064-72. PubMed ID: 21051831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison study of intraarticular and intravenous gadolinium-enhanced magnetic resonance imaging of cartilage in a canine model.
    Kwack KS; Cho JH; Kim M MS; Yoon CS; Yoon YS; Choi JW; Kwon JW; Min BH; Sun JS; Kim SY
    Acta Radiol; 2008 Feb; 49(1):65-74. PubMed ID: 17963083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation of TSE- and T1-3D-GRE-sequences for focal cartilage lesions in vitro in comparison to ultrahigh resolution multi-slice CT].
    Stork A; Schulze D; Schoder V; Koops A; Kemper J; Adam G
    Rofo; 2002 Dec; 174(12):1551-8. PubMed ID: 12471528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patellar cartilage lesions: comparison of magnetic resonance imaging and T2 relaxation-time mapping.
    Hannila I; Nieminen MT; Rauvala E; Tervonen O; Ojala R
    Acta Radiol; 2007 May; 48(4):444-8. PubMed ID: 17453527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MR arthrography of the hip: diagnostic performance of a dedicated water-excitation 3D double-echo steady-state sequence to detect cartilage lesions.
    Knuesel PR; Pfirrmann CW; Noetzli HP; Dora C; Zanetti M; Hodler J; Kuehn B; Schmid MR
    AJR Am J Roentgenol; 2004 Dec; 183(6):1729-35. PubMed ID: 15547220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotropic 3-dimensional fast spin echo imaging versus standard 2-dimensional imaging at 3.0 T of the knee: artificial cartilage and meniscal lesions in a porcine model.
    Ristow O; Stehling C; Krug R; Steinbach L; Sabo G; Ambekar A; Huber M; Link TM
    J Comput Assist Tomogr; 2010; 34(2):260-9. PubMed ID: 20351518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Imaging of articular cartilage].
    Arkun R
    Acta Orthop Traumatol Turc; 2007; 41 Suppl 2():32-42. PubMed ID: 18180582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability of high- and low-field magnetic resonance imaging systems for detection of cartilage and bone lesions in the equine cadaver fetlock.
    Smith MA; Dyson SJ; Murray RC
    Equine Vet J; 2012 Nov; 44(6):684-91. PubMed ID: 22435499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathologic correlations with magnetic resonance images of osteochondrosis lesions in canine shoulders.
    van Bree H; Degryse H; Van Ryssen B; Ramon F; Desmidt M
    J Am Vet Med Assoc; 1993 Apr; 202(7):1099-105. PubMed ID: 8473223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.