These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25323738)

  • 1. A multiscale analysis of nutrient transport and biological tissue growth in vitro.
    O'Dea RD; Nelson MR; El Haj AJ; Waters SL; Byrne HM
    Math Med Biol; 2015 Sep; 32(3):345-66. PubMed ID: 25323738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphase modelling of the influence of fluid flow and chemical concentration on tissue growth in a hollow fibre membrane bioreactor.
    Pearson NC; Shipley RJ; Waters SL; Oliver JM
    Math Med Biol; 2014 Dec; 31(4):393-430. PubMed ID: 24036069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuum model of cell proliferation and nutrient transport in a perfusion bioreactor.
    Shakeel M; Matthews PC; Graham RS; Waters SL
    Math Med Biol; 2013 Mar; 30(1):21-44. PubMed ID: 21994793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective equations governing an active poroelastic medium.
    Collis J; Brown DL; Hubbard ME; O'Dea RD
    Proc Math Phys Eng Sci; 2017 Feb; 473(2198):20160755. PubMed ID: 28293138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curvature- and fluid-stress-driven tissue growth in a tissue-engineering scaffold pore.
    Sanaei P; Cummings LJ; Waters SL; Griffiths IM
    Biomech Model Mechanobiol; 2019 Jun; 18(3):589-605. PubMed ID: 30542833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the fluid-dynamics and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure.
    Ferroni M; Giusti S; Nascimento D; Silva A; Boschetti F; Ahluwalia A
    Med Eng Phys; 2016 Aug; 38(8):725-32. PubMed ID: 27189671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical optimization of cell colonization modelling inside scaffold for perfusion bioreactor: A multiscale model.
    Nguyen TK; Carpentier O; Monchau F; Chai F; Hornez JC; Hivart P
    Med Eng Phys; 2018 Jul; 57():40-50. PubMed ID: 29753628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
    Chung CA; Chen CW; Chen CP; Tseng CS
    Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic dispersion within porous biofilms.
    Davit Y; Byrne H; Osborne J; Pitt-Francis J; Gavaghan D; Quintard M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012718. PubMed ID: 23410370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of a coupled model for numerical simulation of a multiphase flow system in a porous medium and a surface fluid.
    Hibi Y; Tomigashi A
    J Contam Hydrol; 2015 Sep; 180():34-55. PubMed ID: 26255905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiscale approach in the computational modeling of the biophysical environment in artificial cartilage tissue regeneration.
    Causin P; Sacco R; Verri M
    Biomech Model Mechanobiol; 2013 Aug; 12(4):763-80. PubMed ID: 22975839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple approaches to predicting oxygen and glucose consumptions by HepG2 cells on porous scaffolds in an axial-flow bioreactor.
    Podichetty JT; Bhaskar PR; Singarapu K; Madihally SV
    Biotechnol Bioeng; 2015 Feb; 112(2):393-404. PubMed ID: 25116006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass transport in a microchannel bioreactor with a porous wall.
    Chen XB; Sui Y; Lee HP; Bai HX; Yu P; Winoto SH; Low HT
    J Biomech Eng; 2010 Jun; 132(6):061001. PubMed ID: 20887026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the determination of Darcy permeability coefficients for a microporous tissue scaffold.
    Wang Y; Tomlins PE; Coombes AG; Rides M
    Tissue Eng Part C Methods; 2010 Apr; 16(2):281-9. PubMed ID: 19922263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale modelling of fluid and drug transport in vascular tumours.
    Shipley RJ; Chapman SJ
    Bull Math Biol; 2010 Aug; 72(6):1464-91. PubMed ID: 20099043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fabrication of scaffold with controlled porous structure and flow perfusion culture in vitro].
    Li X; Li DC; Wang L; Lu BH; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):579-83. PubMed ID: 16176096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-D coupled computational model of biological cell proliferation and nutrient delivery in a perfusion bioreactor.
    Shakeel M
    Math Biosci; 2013 Mar; 242(1):86-94. PubMed ID: 23291465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element model for nutrient distribution analysis of a hollow fiber membrane bioreactor.
    Unnikrishnan GU; Unnikrishnan VU; Reddy JN
    Int J Numer Method Biomed Eng; 2012 Feb; 28(2):229-38. PubMed ID: 25099327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.