These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25324037)

  • 1. Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing.
    Vaidyanathan R; Naghibosadat M; Rauf S; Korbie D; Carrascosa LG; Shiddiky MJ; Trau M
    Anal Chem; 2014 Nov; 86(22):11125-32. PubMed ID: 25324037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiplexed device based on tunable nanoshearing for specific detection of multiple protein biomarkers in serum.
    Vaidyanathan R; van Leeuwen LM; Rauf S; Shiddiky MJ; Trau M
    Sci Rep; 2015 May; 5():9756. PubMed ID: 25978807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternating current electrohydrodynamics induced nanoshearing and fluid micromixing for specific capture of cancer cells.
    Vaidyanathan R; Rauf S; Dray E; Shiddiky MJ; Trau M
    Chemistry; 2014 Mar; 20(13):3724-9. PubMed ID: 24677444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuneable surface shear forces to physically displace nonspecific molecules in protein biomarker detection.
    Vaidyanathan R; Rauf S; Shiddiky MJ; Trau M
    Biosens Bioelectron; 2014 Nov; 61():184-91. PubMed ID: 24880656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Protein Capture Using a Combination of Nanoyeast Single-Chain Fragment Affinity Reagents and Alternating Current Electrohydrodynamic Forces.
    Vaidyanathan R; Rauf S; Grewal YS; Spadafora LJ; Shiddiky MJ; Cangelosi GA; Trau M
    Anal Chem; 2015 Dec; 87(23):11673-81. PubMed ID: 26551436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tunable "nano-shearing": a physical mechanism to displace nonspecific cell adhesion during rare cell detection.
    Vaidyanathan R; Shiddiky MJ; Rauf S; Dray E; Tay Z; Trau M
    Anal Chem; 2014 Feb; 86(4):2042-9. PubMed ID: 24446838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems.
    Khondakar KR; Dey S; Wuethrich A; Sina AA; Trau M
    Acc Chem Res; 2019 Aug; 52(8):2113-2123. PubMed ID: 31293158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrohydrodynamic removal of non-specific colloidal adsorption at electrode interfaces.
    Rauf S; Shiddiky MJ; Trau M
    Chem Commun (Camb); 2014 May; 50(37):4813-5. PubMed ID: 24647751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrohydrodynamic-Induced SERS Immunoassay for Extensive Multiplexed Biomarker Sensing.
    Kamil Reza K; Wang J; Vaidyanathan R; Dey S; Wang Y; Trau M
    Small; 2017 Mar; 13(9):. PubMed ID: 28004880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Rapid and Specific Surface-Enhanced Raman Scattering Immunoassay Using Nanoscaled Surface Shear Forces.
    Wang Y; Vaidyanathan R; Shiddiky MJ; Trau M
    ACS Nano; 2015 Jun; 9(6):6354-62. PubMed ID: 25978642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular nanoshearing: an innovative approach to shear off molecules with AC-induced nanoscopic fluid flow.
    Shiddiky MJ; Vaidyanathan R; Rauf S; Tay Z; Trau M
    Sci Rep; 2014 Jan; 4():3716. PubMed ID: 24430114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes.
    Xu H; Liao C; Zuo P; Liu Z; Ye BC
    Anal Chem; 2018 Nov; 90(22):13451-13458. PubMed ID: 30234974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detachable microfluidic device implemented with electrochemical aptasensor (DeMEA) for sequential analysis of cancerous exosomes.
    Kashefi-Kheyrabadi L; Kim J; Chakravarty S; Park S; Gwak H; Kim SI; Mohammadniaei M; Lee MH; Hyun KA; Jung HI
    Biosens Bioelectron; 2020 Dec; 169():112622. PubMed ID: 32977087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exosome Purification and Analysis Using a Facile Microfluidic Hydrodynamic Trapping Device.
    Tayebi M; Zhou Y; Tripathi P; Chandramohanadas R; Ai Y
    Anal Chem; 2020 Aug; 92(15):10733-10742. PubMed ID: 32613828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic and electrical considerations in the design of a four-electrode impedance-based microfluidic device.
    Justin G; Nasir M; Ligler FS
    Anal Bioanal Chem; 2011 May; 400(5):1347-58. PubMed ID: 21448604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capture and On-chip analysis of Melanoma Cells Using Tunable Surface Shear forces.
    Tsao SC; Vaidyanathan R; Dey S; Carrascosa LG; Christophi C; Cebon J; Shiddiky MJ; Behren A; Trau M
    Sci Rep; 2016 Jan; 6():19709. PubMed ID: 26815318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.
    Yang F; Liao X; Tian Y; Li G
    Biotechnol J; 2017 Apr; 12(4):. PubMed ID: 28166394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel profiling of cancer cells and proteins using a graphene oxide functionalized ac-EHD SERS immunoassay.
    Reza KK; Dey S; Wuethrich A; Sina AA; Korbie D; Wang Y; Trau M
    Nanoscale; 2018 Oct; 10(39):18482-18491. PubMed ID: 30168562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum dot-based sensitive detection of disease specific exosome in serum.
    Boriachek K; Islam MN; Gopalan V; Lam AK; Nguyen NT; Shiddiky MJA
    Analyst; 2017 Jun; 142(12):2211-2219. PubMed ID: 28534915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.