These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 25324103)

  • 21. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of ultrasound synthetic aperture imaging using bidirectional pixel-based focusing: preliminary phantom and in vivo breast study.
    Kim C; Yoon C; Park JH; Lee Y; Kim WH; Chang JM; Choi BI; Song TK; Yoo YM
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2716-24. PubMed ID: 23686939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sound-speed image reconstruction in sparse-aperture 3-D ultrasound transmission tomography.
    Jirík R; Peterlík I; Ruiter N; Fousek J; Dapp R; Zapf M; Jan J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Feb; 59(2):254-64. PubMed ID: 24626033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic.
    Lee J; Moon JY; Chang JH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications.
    Lim HG; Kim HH; Yoon C
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameter study of 3D synthetic aperture post-beamforming procedure.
    Nikolov SI; Santén P; Bjuvsten O; Jensen JA
    Ultrasonics; 2006 Dec; 44 Suppl 1():e159-64. PubMed ID: 16844163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intravascular ultrasound tissue harmonic imaging in vivo.
    Frijlink ME; Goertz DE; van Damme LC; Krams R; van der Steen AF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Oct; 53(10):1844-52. PubMed ID: 17036792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
    Vos HJ; van Neer PL; Mota MM; Verweij MD; van der Steen AF; Volker AW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):60-71. PubMed ID: 26571525
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coherence-Weighted Synthetic Focusing Applied to Photoacoustic Imaging Using a High-Frequency Annular-Array Transducer.
    Chitnis PV; Aristizábal O; Filoux E; Sampathkumar A; Mamou J; Ketterling JA
    Ultrason Imaging; 2016 Jan; 38(1):32-43. PubMed ID: 25925675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment.
    Lee J; Chang JH
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3146-3155. PubMed ID: 30835204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatial-angular compounding for elastography using beam steering on linear array transducers.
    Rao M; Chen Q; Shi H; Varghese T
    Med Phys; 2006 Mar; 33(3):618-26. PubMed ID: 16878565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of new ultrasound techniques for clinical imaging in selected liver and vascular applications.
    Brandt AH
    Dan Med J; 2018 Mar; 65(3):. PubMed ID: 29510811
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging.
    Shen CC; Lin CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2420-30. PubMed ID: 23192805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time rectilinear 3-D ultrasound using receive mode multiplexing.
    Yen JT; Smith SW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Feb; 51(2):216-26. PubMed ID: 15055812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An efficient sound speed estimation method to enhance image resolution in ultrasound imaging.
    Cho MH; Kang LH; Kim JS; Lee SY
    Ultrasonics; 2009 Dec; 49(8):774-8. PubMed ID: 19635626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison between tissue harmonic imaging and liver-specific late-phase contrast-enhanced pulse-inversion imaging in the detection of hepatocellular carcinoma and liver metastasis.
    Rabenandrasana HA; Furukawa A; Furuichi K; Yamasaki M; Takahashi M; Murata K
    Radiat Med; 2004; 22(2):90-7. PubMed ID: 15176603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Third order harmonic imaging for biological tissues using three phase-coded pulses.
    Ma Q; Gong X; Zhang D
    Ultrasonics; 2006 Dec; 44 Suppl 1():e61-5. PubMed ID: 16844158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pre-clinical phantom comparison of tissue harmonic and brightness mode imaging for application in ultrasound guided prostate brachytherapy.
    Sandhu GK; Dunscombe PB; Khan RF
    Phys Med; 2011 Jul; 27(3):153-62. PubMed ID: 21035371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic aperture ultrasound imaging.
    Jensen JA; Nikolov SI; Gammelmark KL; Pedersen MH
    Ultrasonics; 2006 Dec; 44 Suppl 1():e5-15. PubMed ID: 16959281
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved synthetic aperture focusing technique with applications in high-frequency ultrasound imaging.
    Li ML; Guan WJ; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jan; 51(1):63-70. PubMed ID: 14995017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.