BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 25324149)

  • 1. Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy.
    Scott BR
    J Cell Commun Signal; 2014 Dec; 8(4):341-52. PubMed ID: 25324149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation-stimulated epigenetic reprogramming of adaptive-response genes in the lung: an evolutionary gift for mounting adaptive protection against lung cancer.
    Scott BR; Belinsky SA; Leng S; Lin Y; Wilder JA; Damiani LA
    Dose Response; 2009 Jun; 7(2):104-31. PubMed ID: 19543479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-dose-radiation stimulated natural chemical and biological protection against lung cancer.
    Scott BR
    Dose Response; 2008; 6(3):299-318. PubMed ID: 18846259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sparsely ionizing diagnostic and natural background radiations are likely preventing cancer and other genomic-instability-associated diseases.
    Scott BR; Di Palma J
    Dose Response; 2006 Dec; 5(3):230-55. PubMed ID: 18648608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Berberine protects against 6-OHDA-induced neurotoxicity in PC12 cells and zebrafish through hormetic mechanisms involving PI3K/AKT/Bcl-2 and Nrf2/HO-1 pathways.
    Zhang C; Li C; Chen S; Li Z; Jia X; Wang K; Bao J; Liang Y; Wang X; Chen M; Li P; Su H; Wan JB; Lee SMY; Liu K; He C
    Redox Biol; 2017 Apr; 11():1-11. PubMed ID: 27835779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability.
    Tang FR; Loke WK
    Int J Radiat Biol; 2015 Jan; 91(1):13-27. PubMed ID: 24975555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose radiation-induced protective process and implications for risk assessment, cancer prevention, and cancer therapy.
    Scott BR
    Dose Response; 2007 Jun; 5(2):131-49. PubMed ID: 18648600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic thresholds: a novel explanation of nonlinear dose-response relationships for stochastic radiobiological effects.
    Scott BR
    Dose Response; 2006 May; 3(4):547-67. PubMed ID: 18648632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Prevention of cancer and the dose-effect relationship: the carcinogenic effects of ionizing radiations].
    Tubiana M
    Cancer Radiother; 2009 Jul; 13(4):238-58. PubMed ID: 19539515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preconditioning is hormesis part II: How the conditioning dose mediates protection: Dose optimization within temporal and mechanistic frameworks.
    Calabrese EJ
    Pharmacol Res; 2016 Aug; 110():265-275. PubMed ID: 26748033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The LNT model for cancer induction is not supported by radiobiological data.
    Scott BR; Tharmalingam S
    Chem Biol Interact; 2019 Mar; 301():34-53. PubMed ID: 30763552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications.
    Schirrmacher V
    Biomedicines; 2021 Mar; 9(3):. PubMed ID: 33805626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation.
    Wang JY; Wen LL; Huang YN; Chen YT; Ku MC
    Curr Pharm Des; 2006; 12(27):3521-33. PubMed ID: 17017945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biological-based model that links genomic instability, bystander effects, and adaptive response.
    Scott BR
    Mutat Res; 2004 Dec; 568(1):129-43. PubMed ID: 15530546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Basis of radiation protection].
    Roth J; Schweizer P; Gückel C
    Schweiz Med Wochenschr; 1996 Jun; 126(26):1157-71. PubMed ID: 8711464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways.
    Govindan S; Amirthalingam M; Duraisamy K; Govindhan T; Sundararaj N; Palanisamy S
    Biomed Pharmacother; 2018 Jun; 102():812-822. PubMed ID: 29605769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiation-induced versus endogenous DNA damage: possible effect of inducible protective responses in mitigating endogenous damage.
    Pollycove M; Feinendegen LE
    Hum Exp Toxicol; 2003 Jun; 22(6):290-306; discussion 307, 315-7, 319-23. PubMed ID: 12856953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smoking and hormesis as confounding factors in radiation pulmonary carcinogenesis.
    Sanders CL; Scott BR
    Dose Response; 2006 Dec; 6(1):53-79. PubMed ID: 18648572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinearities in the cellular response to ionizing radiation and the role of p53 therein.
    Murray D; Mirzayans R
    Int J Radiat Biol; 2021; 97(8):1088-1098. PubMed ID: 31986075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silibinin protects rat pancreatic β-cell through up-regulation of estrogen receptors' signaling against amylin- or Aβ
    Yang J; Sun Y; Xu F; Liu W; Hayashi T; Hattori S; Ushiki-Kaku Y; Onodera S; Tashiro SI; Ikejima T
    Phytother Res; 2019 Apr; 33(4):998-1009. PubMed ID: 30729588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.