These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 25324199)

  • 1. A simplified approach for estimating skin permeation parameters from in vitro finite dose absorption studies.
    Lehman PA
    J Pharm Sci; 2014 Dec; 103(12):4048-4057. PubMed ID: 25324199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of skin permeation and concentration of rhododendrol applied as finite dose from complex cosmetic vehicles.
    Arce F; Asano N; See GL; Oshizaka T; Itakura S; Todo H; Sugibayashi K
    Int J Pharm; 2020 Mar; 578():119186. PubMed ID: 32112931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico prediction of percutaneous absorption and disposition kinetics of chemicals.
    Chen L; Han L; Saib O; Lian G
    Pharm Res; 2015 May; 32(5):1779-93. PubMed ID: 25407547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion modelling of percutaneous absorption kinetics. Predicting urinary excretion from in vitro skin permeation tests (IVPT) for an infinite dose.
    Liu X; Yousef S; Anissimov YG; van der Hoek J; Tsakalozou E; Ni Z; Grice JE; Roberts MS
    Eur J Pharm Biopharm; 2020 Apr; 149():30-44. PubMed ID: 32018051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Percutaneous absorption of steroids from finite doses: Predicting urinary excretion from in vitro skin permeation testing.
    Liu X; Cheruvu HS; Anissimov YG; van der Hoek J; Tsakalozou E; Ni Z; Ghosh P; Grice JE; Roberts MS
    Int J Pharm; 2022 Sep; 625():122095. PubMed ID: 35961420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of in vitro skin permeation of 22-oxacalcitriol having a complicated metabolic pathway.
    Yamaguchi K; Mitsui T; Yamamoto T; Shiokawa R; Nomiyama Y; Ohishi N; Aso Y; Sugibayashi K
    Pharm Res; 2006 Apr; 23(4):680-8. PubMed ID: 16550468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling of the skin barrier.
    Naegel A; Heisig M; Wittum G
    Methods Mol Biol; 2011; 763():1-32. PubMed ID: 21874441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion modeling of percutaneous absorption kinetics: 3. Variable diffusion and partition coefficients, consequences for stratum corneum depth profiles and desorption kinetics.
    Anissimov YG; Roberts MS
    J Pharm Sci; 2004 Feb; 93(2):470-87. PubMed ID: 14705203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles, structure-based transdermal transport model to evaluate lipid partition and diffusion coefficients of hydrophobic permeants solely from stratum corneum permeation experiments.
    Kushner J; Deen W; Blankschtein D; Langer R
    J Pharm Sci; 2007 Dec; 96(12):3236-51. PubMed ID: 17887175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis, interpretation, and extrapolation of dermal permeation data using diffusion-based mathematical models.
    Krüse J; Golden D; Wilkinson S; Williams F; Kezic S; Corish J
    J Pharm Sci; 2007 Mar; 96(3):682-703. PubMed ID: 17080423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion modeling of percutaneous absorption kinetics: 2. Finite vehicle volume and solvent deposited solids.
    Anissimov YG; Roberts MS
    J Pharm Sci; 2001 Apr; 90(4):504-20. PubMed ID: 11170040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supersaturation: enhancement of skin penetration and permeation of a lipophilic drug.
    Moser K; Kriwet K; Froehlich C; Kalia YN; Guy RH
    Pharm Res; 2001 Jul; 18(7):1006-11. PubMed ID: 11496937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of solvents on skin absorption of nonvolatile lipophilic and polar solutes under finite dose conditions.
    Intarakumhaeng R; Wanasathop A; Li SK
    Int J Pharm; 2018 Jan; 536(1):405-413. PubMed ID: 29180256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of in vitro skin permeation of 22-oxacalcitriol from ointments based on a two- or three-layer diffusion model considering diffusivity in a vehicle.
    Yamaguchi K; Mitsui T; Aso Y; Sugibayashi K
    Int J Pharm; 2007 May; 336(2):310-8. PubMed ID: 17240092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite dose percutaneous drug absorption: theory and its application to in vitro timolol permeation.
    Kubota K; Yamada T
    J Pharm Sci; 1990 Nov; 79(11):1015-9. PubMed ID: 2292763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the application area on finite dose permeation in relation to drug type applied.
    Hahn T; Selzer D; Neumann D; Kostka KH; Lehr CM; Schaefer UF
    Exp Dermatol; 2012 Mar; 21(3):233-5. PubMed ID: 22379974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure.
    Dancik Y; Miller MA; Jaworska J; Kasting GB
    Adv Drug Deliv Rev; 2013 Feb; 65(2):221-36. PubMed ID: 22285584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of the permeability coefficient from a finite-dose, in vitro percutaneous drug permeation study.
    Kubota K; Maibach HI
    J Pharm Sci; 1991 Oct; 80(10):1001-2. PubMed ID: 1783994
    [No Abstract]   [Full Text] [Related]  

  • 20. [The effect of molecular volume and partition coefficient on percutaneous absorption].
    Liang WQ; Lin W
    Yao Xue Xue Bao; 1992; 27(9):684-9. PubMed ID: 1293941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.