These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 25324549)
1. Structural identification of the Vps18 β-propeller reveals a critical role in the HOPS complex stability and function. Behrmann H; Lürick A; Kuhlee A; Balderhaar HK; Bröcker C; Kümmel D; Engelbrecht-Vandré S; Gohlke U; Raunser S; Heinemann U; Ungermann C J Biol Chem; 2014 Nov; 289(48):33503-12. PubMed ID: 25324549 [TBL] [Abstract][Full Text] [Related]
2. HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Krämer L; Ungermann C Mol Biol Cell; 2011 Jul; 22(14):2601-11. PubMed ID: 21613544 [TBL] [Abstract][Full Text] [Related]
3. The Habc domain of the SNARE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion. Lürick A; Kuhlee A; Bröcker C; Kümmel D; Raunser S; Ungermann C J Biol Chem; 2015 Feb; 290(9):5405-13. PubMed ID: 25564619 [TBL] [Abstract][Full Text] [Related]
4. Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Takemoto K; Ebine K; Askani JC; Krüger F; Gonzalez ZA; Ito E; Goh T; Schumacher K; Nakano A; Ueda T Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2457-E2466. PubMed ID: 29463724 [TBL] [Abstract][Full Text] [Related]
5. Subunit exchange among endolysosomal tethering complexes is linked to contact site formation at the vacuole. González Montoro A; Vargas Duarte P; Auffarth K; Walter S; Fröhlich F; Ungermann C Mol Biol Cell; 2021 Dec; 32(22):br14. PubMed ID: 34668759 [TBL] [Abstract][Full Text] [Related]
6. HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Starai VJ; Hickey CM; Wickner W Mol Biol Cell; 2008 Jun; 19(6):2500-8. PubMed ID: 18385512 [TBL] [Abstract][Full Text] [Related]
7. Distinct targeting and fusion functions of the PX and SNARE domains of yeast vacuolar Vam7p. Fratti RA; Wickner W J Biol Chem; 2007 Apr; 282(17):13133-8. PubMed ID: 17347148 [TBL] [Abstract][Full Text] [Related]
8. Defined subunit arrangement and rab interactions are required for functionality of the HOPS tethering complex. Ostrowicz CW; Bröcker C; Ahnert F; Nordmann M; Lachmann J; Peplowska K; Perz A; Auffarth K; Engelbrecht-Vandré S; Ungermann C Traffic; 2010 Oct; 11(10):1334-46. PubMed ID: 20604902 [TBL] [Abstract][Full Text] [Related]
9. VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction. Hunter MR; Scourfield EJ; Emmott E; Graham SC Biochem J; 2017 Oct; 474(21):3615-3626. PubMed ID: 28931724 [TBL] [Abstract][Full Text] [Related]
10. Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Bröcker C; Kuhlee A; Gatsogiannis C; Balderhaar HJ; Hönscher C; Engelbrecht-Vandré S; Ungermann C; Raunser S Proc Natl Acad Sci U S A; 2012 Feb; 109(6):1991-6. PubMed ID: 22308417 [TBL] [Abstract][Full Text] [Related]
11. Assembly of intermediates for rapid membrane fusion. Harner M; Wickner W J Biol Chem; 2018 Jan; 293(4):1346-1352. PubMed ID: 29208657 [TBL] [Abstract][Full Text] [Related]
12. Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery. Shvarev D; Schoppe J; König C; Perz A; Füllbrunn N; Kiontke S; Langemeyer L; Januliene D; Schnelle K; Kümmel D; Fröhlich F; Moeller A; Ungermann C Elife; 2022 Sep; 11():. PubMed ID: 36098503 [TBL] [Abstract][Full Text] [Related]
13. Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Plemel RL; Lobingier BT; Brett CL; Angers CG; Nickerson DP; Paulsel A; Sprague D; Merz AJ Mol Biol Cell; 2011 Apr; 22(8):1353-63. PubMed ID: 21325627 [TBL] [Abstract][Full Text] [Related]
14. Vps41 phosphorylation and the Rab Ypt7 control the targeting of the HOPS complex to endosome-vacuole fusion sites. Cabrera M; Ostrowicz CW; Mari M; LaGrassa TJ; Reggiori F; Ungermann C Mol Biol Cell; 2009 Apr; 20(7):1937-48. PubMed ID: 19193765 [TBL] [Abstract][Full Text] [Related]
15. The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Balderhaar HJ; Lachmann J; Yavavli E; Bröcker C; Lürick A; Ungermann C Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3823-8. PubMed ID: 23417307 [TBL] [Abstract][Full Text] [Related]
16. HOPS catalyzes the interdependent assembly of each vacuolar SNARE into a SNARE complex. Orr A; Song H; Rusin SF; Kettenbach AN; Wickner W Mol Biol Cell; 2017 Apr; 28(7):975-983. PubMed ID: 28148647 [TBL] [Abstract][Full Text] [Related]
17. A Rab prenyl membrane-anchor allows effector recognition to be regulated by guanine nucleotide. Lee M; Wickner W; Song H Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7739-7744. PubMed ID: 32213587 [TBL] [Abstract][Full Text] [Related]
18. The Dsl1 protein tethering complex is a resident endoplasmic reticulum complex, which interacts with five soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors (SNAREs): implications for fusion and fusion regulation. Meiringer CT; Rethmeier R; Auffarth K; Wilson J; Perz A; Barlowe C; Schmitt HD; Ungermann C J Biol Chem; 2011 Jul; 286(28):25039-46. PubMed ID: 21550981 [TBL] [Abstract][Full Text] [Related]
19. Yeast vacuolar HOPS, regulated by its kinase, exploits affinities for acidic lipids and Rab:GTP for membrane binding and to catalyze tethering and fusion. Orr A; Wickner W; Rusin SF; Kettenbach AN; Zick M Mol Biol Cell; 2015 Jan; 26(2):305-15. PubMed ID: 25411340 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation of the effector complex HOPS by the vacuolar kinase Yck3p confers Rab nucleotide specificity for vacuole docking and fusion. Zick M; Wickner W Mol Biol Cell; 2012 Sep; 23(17):3429-37. PubMed ID: 22787280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]